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Abstract—Time multiplexing is an important technique to overcome
the bandwidth bottleneck of limited input-output pins in FPGAs. Most
prior work tackles the problem from a physical design standpoint
to minimize the number of cut nets or Time Division Multiplexing
(TDM) ratio through circuit partitioning or routing. In this work, we
formulate a new orthogonal approach at the logic level to achieve
time multiplexing through structural and functional circuit folding. The
new formulation provides a smooth trade-off between bandwidth and
throughput. Experiments show the effectiveness of the structural method
and improved optimality of the functional method on look-up-table and
flip-flop usage.

Index Terms—circuit folding, pin-count reduction, time-frame folding,
time multiplexing

I. INTRODUCTION

Multi-FPGA boards are commonly used for system emulation [1]
and prototyping. As the logic capacity, i.e., the number of look-up-
tables (LUTs), of an FPGA increases with new technology nodes,
the growth in I/O pin count remains relatively slow. This unbalance
growth rate makes the number of available I/O pins for each FPGA
relatively small compared to the number of required inter-chip
signals, which leads to a significant underutilization of logic resources
[2].

To overcome the bottleneck of limited inter-chip I/O bandwidth,
time division multiplexing (TDM) [3] was proposed, where physical
pins and wires are multiplexed among multiple signals, increasing
the effective number of available logic pins. Under this scheme, the
system requires two separate clocks, a system clock, on which the
FPGAs operate, and a faster I/O clock, on which the inter-chip signals
are propagated. The ratio of the system clock to the I/O clock is called
the TDM ratio r. Essentially, r times the I/O bandwidth of signals can
be transmitted during a system clock. Figure 1 illustrates an example
of I/O transmission between two FPGAs with TDM ratio 4. The
TDM technique dramatically increases the capability of multi-FPGA
systems. However, it reduces the system throughput as the system
clock is operating at a lower frequency. Most of the related work, e.g.,
[4], viewed this problem from a physical design standpoint and tried
to minimize the number of cut nets, which corresponds to the number
of inter-chip signals, passing through each FPGA. Another line of
research, e.g., [5], [6], considers scheduling and temporal partitioning
for time-multiplexed FPGAs. They partitioned a combinational circuit
into several pipeline stages for time multiplexing. However, the
approach cannot control the pin-count reduction as it is determined
by the circuit structure. In [7], [8], the problem of pin assignment
during pin multiplexing, which is the mapping between logic inputs
and outputs to the physical pins, was investigated. The pin-count
reduction issue was not addressed.

In this work, we formulate a new orthogonal approach to achieve
time multiplexing at the logic level. The proposed structural and
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Fig. 1: TDM I/O transmission with ratio 4.

functional methods can directly reduce the number of input pins of a
logic circuit as desired by folding the computation of the circuit. The
resulting circuit will satisfy the input pin count constraint at the cost
of additional flip-flops storing required information and additional
control circuitry for intended computation. This new approach does
not require dynamic reconfiguration of the FPGA, unlike [5], [6].
Neither does it require an additional I/O clock as TDM, the I/O
transmission can work in synchronization with the system clock.

In the literature, the term “folding” is used elsewhere. In [9],
a folding transformation technique was proposed to schedule and
bind a data-flow graph onto a hardware architecture, where folding
refers to the process of executing multiple algorithmic operations in
a hardware unit. In [10], a folding technique was proposed to identify
structurally identical subcircuits to share gate implementation using
dual-edge-triggered flip-flops for time multiplexing. Their primary
objective was to minimize the circuit area after technology mapping,
while ours is to reduce the input pin count.

The main results of this work include: 1) formulating a new time
multiplexing scheme, 2) proposing structural and functional circuit
folding methods, that convert a combinational circuit into a sequen-
tial one with equivalent input-output behavior modulo time-frame
expansion, 3) conducting experimental evaluation on the proposed
methods, and demonstrating their effectiveness in input pin reduction
to alleviate the I/O pin bottleneck of FPGAs.

The rest of this paper is organized as follows. After Section II
introduces the essential preliminaries, the problem of time multiplex-
ing is then formulated in Section III. Our algorithmic solutions are
presented in Sections IV and V. Section VI evaluates the experimental
results, and finally Section VII concludes this paper.

II. PRELIMINARIES

For our notation, sets are denoted by capital letters, e.g. S; the
elements in a set are denoted by minuscule letters, e.g. x ∈ S; and
the cardinality of a set S is denoted as |S|.



A combinational circuit CC is a directed acyclic graph with vertices
V and edges E ⊆ V ×V . Two subsets I,O ⊂ V are identified as the
primary inputs (PIs) and outputs (POs), respectively. For (u, v) ∈ E,
we call u is a fanin of v, and v is a fanout of u. Each vertex v ∈ V
is associated with a Boolean variable and with a Boolean function
expressed in terms of its fanin variables. The support set of v is the
set of PIs that can reach v through a path consisting of edges in E.

A sequential circuit CS is a combinational circuit augmented with
state-holding elements (flip-flops), each of which takes an output
of the combinational circuit as its input and produces an output to
an input of the combinational circuit. The behavior of CS can be
described by a finite state machine (FSM) (I , O, S, s1, ∆, Ω), where
I is the set of input symbols, O is the set of output symbols, S 6= ∅
is a finite set of states, s1 ∈ S is the initial state, ∆ : S × I → S is
the state transition function, Ω : S × I → O is the output function.
An FSM is completely specified, if for every state s ∈ S under
every input, s’s output and next state are defined; otherwise, it is
incompletely specified.

In time-frame expansion, a sequential circuit is duplicated and
cascaded, where the inputs and outputs of the flip-flops from the con-
secutive time-frames are connected together, resulting in an unrolled,
iterative combinational circuit. In the sequel, the timestamp of the in-
put/output of an iterative circuit is denoted by superscript letters. E.g.,
for a sequential circuit with input x and output y, the timestamped
input and output of the iterative circuit is denoted as x1, . . . , xt and
y1, . . . , yt, respectively. On the other hand, time-frame folding (TFF)
[11] aims at transforming a k-iterative combinational circuit into a
sequential circuit. The resulting sequential circuit has the input-output
behavior consistent with the original combinational circuit within
the first bounded k time-frames. Essentially, time-frame folding is
a reverse operation of time-frame expansion. Figure 2 illustrates the
relation of time-frame expansion and folding operations, where the
circuit is expanded and folded by 2 time-frames.

Fig. 2: Time-frame expansion vs. folding.

III. PROBLEM FORMULATION

The problem of circuit folding for time multiplexing can be stated
as follows.

Problem Statement (Circuit Folding for Time Multiplexing). Given
a folding number T and a combinational circuit CC with inputs
U = {u1, . . . , un} and outputs W = {w1, . . . , wn′}, we are asked
to fold CC into a sequential circuit CS with inputs X = {x1, . . . , xm}
and outputs Y = {y1, . . . , ym′}, where m = dn/T e and m′ ≤ n′,
such that unfolding (expanding) CS by T time-frames yields a
combinational circuit C′C with inputs (X1, . . . , XT ) and outputs
(Y 1, . . . , Y T ) that is functionally equivalent to CC under some
proper association of their inputs and outputs. That is, CS achieves
time multiplexing by taking T clock cycles, each taking m partial
inputs, to execute the computation of CC .

In the sequel, we assume without loss of generality that n is
divisible by T as one can always add dummy inputs (with no fanouts)
to CC to satisfy the divisibility.

Fig. 3: Illustration of structural circuit folding.

We present two methods, structural circuit folding and functional
circuit folding, for time multiplexing as follows.

IV. STRUCTURAL CIRCUIT FOLDING

To find the sequential circuit CS of the circuit folding problem
of Section III, let the inputs U of the given combinational circuit
CC be divided into T groups: X1 = {u1, . . . , um}, . . . , XT =
{u(T−1)×m, . . . , un}. We then traverse the logic gates of CC in a
topological order by T iterations. At iteration t, for t = 1, . . . , T ,
a topological traversal is initiated at the inputs Xt. A gate will be
visited if and only if all of its fanins have been visited. On a visit to a
gate in CC , a corresponding gate will be duplicated in CS . If a primary
output of CC is visited, then it will be scheduled to output Y t at time-
frame t in CS . At the end of each iteration, the gates in the frontier
of the traversal is collected, each of which has a newly introduced
flip-flop in CS to store its value. After T iterations, all the gates in CC
have been visited. Moreover, additional flip-flops are introduced to
track the time-frame information, either with a dlog2(T )e-bit counter
using binary encoding or a T -bit shift register using one-hot encoding.
The corresponding control logic is then added to select the correct
output at each time-frame. Finally, we can obtain a sequential circuit
CS with inputs X = {x1, . . . , xm}. The number of outputs of CS
is determined by the maximum number of outputs being scheduled
in a time-frame among the T time-frames. Figure 3 illustrates the
iterative-layering procedure of structural circuit folding. Different
colors in the figure indicate the gate traversal at different time-frames.
The frontier of each traversal is circled by a rounded rectangle and
their signals are stored in the flip-flops, serving as the pseudo inputs
to the circuit traversed in the next iteration.

Example 1. To illustrate the procedure of structural circuit folding,
we take the 3-bit adder in Figure 4 as an example. The adder has
inputs U = A ∪ B and outputs W = {s0, s1, s2, cout}, where A =
{a0, a1, a2} and B = {b0, b1, b2} are the 2 input 3-bit numbers,
with ai and bi being the ith bits of A and B, respectively, si the ith

summation bit, and cout the carry-out bit. The inputs are grouped as
X1 = {a0, b0}, . . . , X3 = {a2, b2}. The gates in Figure 4 marked
in green, blue, and orange correspond to the gates visited at the
first, second, and third iteration, respectively. A total of 5 flip-flops
are introduced, 2 for storing the intermediate information of g2 and
g8, which are essentially the carry bits of the first two iterations,
and 3 for storing the time-frame information as a shift register. The
number of outputs of CS is determined by |Y 3| = 2. The outputs are



Fig. 4: Example of 3-bit adder (adder3) circuit under folding.

Fig. 5: Computation flow of functional circuit folding.

scheduled as follows: Y 1 = {s0,null}, Y 2 = {s1,null}, and Y 3 =
{s2, cout}, where null denotes a dummy output. With the control logic
being added for selecting the correct output at each time-frame, CS
can be synthesized to a circuit with 2 inputs, 2 outputs, 5 flip-flops,
and 23 AIG nodes (or 8 6-input LUTs) [12].

Although the structural circuit folding method is efficient and
scalable to large circuits, the constructed sequential circuit CS can
be sub-optimal. Taking adder3 of Figure 4 for example, we know
that ultimately CS can be implemented with an 1-bit carry-save adder,
consisting of only 1 input, 2 outputs, 1 flip-flop, and 7 AIG nodes
(for a full adder implementation). It motivates the functional circuit
folding approach as we present next.

V. FUNCTIONAL CIRCUIT FOLDING

We exploit the recent time-frame folding (TFF) technique [11] to
the time multiplexing problem. Note that the original TFF cannot be
applied directly because it assumes the given combinational circuit
under folding is in an iterative form. However, time multiplexing must
work for general combinational circuits not necessarily iterative ones.
Below we detail the functional circuit folding method.

As shown in Figure 5, the functional circuit folding algorithm
consists of three main computation steps: 1) pin scheduling, 2) FSM
construction via time-frame folding, and 3) state encoding, to be
presented in the following subsections.

A. Pin Scheduling and Iterative Circuit Conversion

Given a folding number T and a combinational circuit CC with
inputs U = {u1, . . . , un} and outputs W = {w1, . . . , wn′}, the pin
scheduling procedure permutes the inputs and outputs (and possibly
adds dummy inputs and outputs) to convert CC into a virtual T -
iterative combinational circuit C′C with inputs X1, . . . , XT for Xt =
{xt

1, . . . , x
t
m} and outputs Y 1, . . . , Y T for Y t = {yt

1, . . . , y
t
m′},

where m = dn/T e and m′ ≤ n′. The circuit after scheduling must
satisfy the property that every primary output wi ∈ W is scheduled
at some iteration t while its input supports are scheduled in iterations
t′ ≤ t.

Algorithm 1 shows a heuristic scheduling procedure of outputs
W = {w1, . . . , wn′} with respect to a folding number T . In line 1,
the number m of inputs in one circuit iteration is calculated. In line 2,
the set of outputs W is sorted according to their support sizes in an
ascending order. In line 3, the sets Usup , Y

1, . . . , Y T are initialized
to be empty. In lines 4-8, the loop goes over each output wi to
determine its iteration. In line 5, the support set of wi is added to
Usup . In line 6, the earliest available iteration t for wi is calculated. In
line 7, wi is assigned to Y t. Finally, the output schedule is returned
in line 9. Note that to make the number of outputs scheduled at each
iteration identical, null (dummy) outputs are inserted to Y 1, . . . , Y T .

Algorithm 1 OutputSchedule

Input: CC with inputs U = {u1, . . . , un} and outputs W =
{w1, . . . , wn′}, folding number T

Output: output schedule Y 1, . . . , Y T

1: m := n/T ;
2: SortAscend(W );
3: Usup , Y

1, . . . , Y T := ∅;
4: foreach wi in W do
5: Usup := Usup ∪ Support(wi);
6: t := d|Usup |/me;
7: Y t := Y t ∪ {wi};
8: end for
9: return (Y 1, . . . , Y T );

With the outputs being scheduled, the inputs W = {w1, . . . , wn′}
can be scheduled accordingly as outlined in Algorithm 2. Let Xque

be a queue to store the ordered inputs. In line 1, Xque is initialized as
an empty queue. In lines 2-6, the loop iterates through each scheduled
outputs Y t to fill in the queue. In line 3, the supports Xsup of Y t

that have not yet been scheduled during the previous iterations are
collected in queue Xsup . In line 4, an optional optimization step is
performed to reorder Xsup . Since the FSM construction algorithm in
the later step relies on BDD-based operations, a smaller BDD size of
C′C would help to reduce the execution time. Therefore, BDD variable
reordering with symmetric sifting [13] technique is applied to Xsup

to minimize the BDD size of outputs Y t of CC . In line 5, Xsup is
pushed into the queue Xque . In line 7, Xque is evenly divided into
T groups X1, . . . , XT , which are finally returned in line 8.

Algorithm 2 InputSchedule

Input: CC with inputs U = {u1, . . . , un} and outputs W =
{w1, . . . , wn′}, folding number T , and output schedule
Y 1, . . . , Y T

Output: input schedule X1, . . . , XT

1: Xque := ∅;
2: for t = 1, . . . , T do
3: Xsup := Support(Y t) \ Xque ;
4: Xreord := BddSymSift(CC , t,Xsup);
5: Xque := Append(Xque , Xreord );
6: end for
7: (X1, . . . , XT ) := Split(Xque , T );
8: return (X1, . . . , XT );



Example 2. Consider the adder3 example. After pin scheduling, we
have outputs Y 1 = {s0,null}, Y 2 = {s1,null}, Y 3 = {s2, cout},
and inputs X1 = {a0, b0}, X2 = {a1, b1}, X3 = {a2, b2}. Note
that the null (dummy) outputs are inserted to make the number of
outputs scheduled at each iteration identical.

B. FSM Construction via Time-Frame Folding

Given an T -iterative combinational circuit C′C with inputs
X1, . . . , XT for Xt = {xt

1, . . . , x
t
m} and outputs Y 1, . . . , Y T for

Y t = {yt
1, . . . , y

t
m′}, the time-frame folding (TFF) algorithm [11]

can be applied to construct an FSM with inputs X = {x1, . . . , xm}
and outputs Y = {y1, . . . , ym′}, which has the same input-
output behavior as C′C within the T bounded time-frames. The
notion of states at time-frame t is induced by the output functions
Y t+1, . . . , Y T , each of which induces an equivalence relation and
effectively forms a partition on the Boolean space of X1 ∪ . . . ∪Xt.
With the technique of hyper-function encoding [14] and BDD-based
functional decomposition, we are able to determine the refinement of
all such partitions. Each cell in the refined partition corresponds to
a state at time-frame t. The transitions between states can then be
constructed according to the identified state information.

Some minor modifications to the TFF algorithm are needed as we
discuss below. In [11], the iterative circuit being folded or transformed
is fully-specified, that is, there are no null output functions. Because
null functions do not provide any additional information for state
partitioning, they can simply be discarded from Y t+1, . . . , Y T or
be treated as constant functions during the encoding stage of state
identification. Similarly, when determining the output response of a
state at time-frame t, if there is a null output scheduled at that time-
frame, then its corresponding slot should remain unspecified. In the
sequel, St = {st1, . . . , stk} is used to denote the set of states identified
at time-frame t.

Even though by BDD-based functional decomposition we can
guarantee that |St| is minimum, the FSM constructed may not
necessarily be state minimized, since the equivalent states in different
time-frames are not yet considered. In the derived FSM, there is a
unique initial state s01 and don’t-care destination state sT∗ inserted
by the time-frame folding algorithm, along with some null (dummy)
outputs at several states. As the FSM is incompletely specified, the
flexibility leaves room for state minimization. In our implementation,
we adopt the SAT-based exact minimization algorithm MeMin [15]
for FSM simplification.

Example 3. The state diagram in Figure 6a, where the mark “>”
indicates the initial state, is obtained by folding the adder3 circuit
by 3 time-frames with the functional circuit folding algorithm. It can
be further minimized to that in Figure 6b. The number of states
reduces from 6 (including the don’t-care state s3∗) to 2. In Figure 6b,
each state is annotated with its compatible states in Figure 6a. We
can observe that the minimized FSM is essentially a carry-save adder,
where s′0 and s′1 corresponds to the state with carry-bit of value 0
and 1, respectively.

C. State Encoding

To convert an FSM into a sequential circuit CS , a state-encoding
step has to be performed. Let S be the state set of the FSM. In our
implementation, we apply two different encoding methods: 1) natural
binary encoding, which uses dlog2 |S|e bits, and 2) one-hot encoding,
which uses |S| bits, each of which represents a state in S.

(a) FSM before state minimization.

(b) FSM after state minimization.

Fig. 6: FSM by functional circuit folding of adder3.

TABLE I: Benchmark statistics.

circuit #PI #PO #gate #LUT

64-adder 128 65 507 96
128-adder 256 129 844 244

apex2 38 3 1448 581
arbiter* 256 1 361 102
b14 C 276 299 3890 1152
b15 C 484 519 6801 1966

b17 C* 380 3 1634 381
b20 C 521 512 8173 2221
b21 C 521 512 8250 2311
b22 C 766 757 12355 3375
C7552 207 108 1485 340

des 256 245 3087 717
e64 65 65 244 114

g216 216 216 3982 648
g625 625 625 10625 2498
g1296 1296 1296 31447 5184

hyp 256 128 213158 45142
i2 201 1 208 63
i3 132 6 126 38
i4 192 6 186 42
i6 138 67 444 67
i7 199 67 558 67
i10 257 224 1586 507
max 512 130 2776 812

memctrl 1204 1231 15908 5207
toolarge 38 3 2642 1111

voter 1001 1 12400 1667

VI. EXPERIMENTAL RESULTS

The proposed structural and functional methods were imple-
mented in C++ language within the ABC system [12], which uti-
lized CUDD [16] as the underlying BDD package. Moreover, an
open source package MeMin [15] was used for state minimization.
The two methods were evaluated on 27 combinational circuits se-
lected or converted from several sets of benchmarks, including ITC,
MCNC(LGSynth), LEKO/LEKU, Adder, and EPFL benchmarks. The
information of these circuits are shown in Table I, where columns
2-5 list the numbers of primary inputs, primary outputs, AIG nodes,
and 6-input LUTs, respectively, of the circuits after optimization.
The circuits marked with “*” are simplified from the original circuits
by extracting some primary outputs and keeping only the structural
input support of those outputs. All the experiments were conducted
on a Linux server with Intel(R) Core(TM) i7-8700 3.20GHz CPU
and 32GB RAM.

We first evaluate the effectiveness of the structural method for
time multiplexing by imposing the I/O pin count limitation to 200,
according to some commercial FPGA specification. Table II shows
the results on folding 17 benchmark circuits with more than 200
pins, where column 2 lists the number of time-frames each circuit



TABLE II: Results of structural circuit folding.

circuit #frm #in #out #FF #gate #LUT overhead
128-adder 2 128 65 2 641 195 -20.08%

b14 C 2 138 262 453 5213 1540 33.68%
b15 C 3 162 274 561 8928 2473 25.79%
b20 C 3 174 424 734 10654 2964 33.45%
b21 C 3 174 424 726 10497 2952 27.74%
b22 C 4 192 661 1266 16536 4587 35.91%
C7552 2 104 96 117 1828 447 31.47%

des 2 128 245 185 3617 868 21.06%
g1296 7 186 1296 4289 36873 9688 86.88%
g216 2 108 216 167 3483 820 26.54%
g625 4 157 625 1607 15043 4330 73.34%
hyp 2 128 128 256 145628 29805 -33.98%
i2 2 101 1 10 161 47 -22.95%
i10 2 129 180 224 2365 740 45.96%
max 3 171 130 395 3912 1003 23.52%

memctrl 7 172 772 3294 27465 8317 59.73%
voter 6 167 1 166 11446 1921 15.24%

should be folded, and columns 3-8 list the information of folded
sequential circuit, including the number of inputs, outputs, flip-flops,
AIG nodes, 6-input LUTs, and the LUT overhead incurred comparing
to the original combinational circuit, respectively. The experimental
results indicate the ability of the structural method on meeting the I/O
pin constraint1 with an average of 34.84% LUT overhead, despite the
fact that there are cases, 128-adder, hyp, i2, with LUT savings.
Notice that the LUT increase could not be a serious problem as the
LUT resources are not as critical as the I/O pin bottleneck in FPGAs.
As all the experiments were done in less than a second, the results
demonstrate the scalability of the structural method.

A simple alternative to fold a circuit by T time-frames can be
done by temporarily storing inputs of the first T − 1 time-frames
into flip-flops and defer computing all outputs at the last time-frame.
When applied to the same 17 benchmark circuits in Table II, the
additional control circuitry to store the input signals of this simple
method incurred an average 46.59% LUT overhead, which is 11.75%
higher than the proposed structural method. The number of flip-flops
required for this simple method is smaller than the structural method
in 14 out of the 17 cases, as it is linearly proportionate to the number
of primary inputs of the original combinational circuit. However,
for cases such as voter, the number of flip-flops under the simple
folding is 841 whereas that under the structural folding is 166, which
is significantly smaller than the former. The number of output pins
after this simple folding remains the same as the number of primary
outputs of the original combinational circuit, since all the outputs are
scheduled to compute at the last time-frame. In contrast, the structural
method can achieve output pin reduction on 9 out of the 17 cases. In
comparison, the structural method is better than the simple method
when taking the number of LUTs, flip-flops and output pins into
consideration, as the resources of output pins and LUTs are more
critical than those of flip-flops in FPGAs.

To study the potential of latency reduction by circuit folding, we
perform case analysis on circuit i10, with 257 PIs and 224 POs.
The analysis is based on the following assumptions: 1) Assume the
maximum I/O transmission rate is 200 bits per I/O clock cycle. 2)
Assume TDM ratio r = 1, i.e., the system clock cycle equals the
I/O clock cycle, for the circuit without folding and the circuit with
folding. 3) Assume the combinational logic of both circuits without
and with folding can be computed in one I/O clock cycle. With circuit
folding, i10 would be folded by two time-frames into a sequential
circuit with 129 inputs and 180 outputs as shown in Table II, with

1Note that the number of output pins can be larger than 200. In that case,
multiple clock cycles can be taken to produce the outputs.

44 outputs scheduled in the first time-frame and 180 scheduled at
the second time-frame. The overall execution requires three system
(also I/O) clock cycles: the first cycle transmits 129 inputs, second
cycle 129 inputs and 44 outputs, and third cycle 180 outputs. In
contrast, without circuit folding, the execution of i10 requires a
total of four I/O clock cycles: the first cycle transmits 200 inputs,
second cycle 57 inputs, third cycle 200 outputs, and fourth cycle
24 outputs. Effectively, circuit folding may achieve 25% I/O clock
cycle reduction. In fact, TDM aims at increasing the effective I/O
pins of FPGA by slowing down the system clock to increase I/O
transmissions during a system clock period, while our circuit folding
can directly decrease the required number of pins of a logic circuit.
The TDM and circuit folding methods are orthogonal, and can be
combined to alleviate the FPGA I/O bottleneck issue.

To compare the performance of the structural and functional meth-
ods, we conducted experiments on 11 benchmarks, each being folded
by 4, 8 and 16 time-frames. A timeout limit of 300 seconds was
imposed on pin scheduling and functional circuit folding combined,
and the same limit was imposed on MeMin for state minimization.
Table III shows the 33 results, where columns 2-3 list the folding
number and the number of inputs of the folded sequential circuits,
respectively, and columns 4-16 list the folded circuit information of
the two methods, including the number of outputs, AIG nodes, LUTs,
and flip-flops. The results of the functional method are annotated
in column 15 with the applied configurations: whether to enable
input reordering (r/nr), whether to minimize FSM states (m/nm), and
the two encoding options (nat/1hot). Column 9 lists the numbers
of states before and after minimization (separated by “/”), columns
13-14 list the reduction on the numbers of LUTs and flip-flops,
respectively, of the functional method over the structural method, and
column 16 lists the CPU time in seconds of the functional method
on each benchmark. An entry “-” in the table indicates that the
value cannot be obtained within the timeout limit. The structural
method took less than a second for all the experiments, while the
functional method generated results for 29 of the 33 instances within
the timeout limit. On the other hand, the functional method achieved
an average of 44.93% and 64.93% reductions on LUT and flip-flop
usage, respectively, over the structural method in the 29 cases.

Fig. 7: Circuit size comparison.

In addition, we compared the sizes of the original combinational
circuits to their folded sequential circuits under the two methods in
terms of the number of LUTs. The results are plotted in Figure 7,
where the triangular and circular points correspond to the results



TABLE III: Comparison between structural and functional methods.

name #frm #in
structural method functional method

#out #gate #LUT #FF #out #state #gate #LUT #FF #LUT red. #FF red. config runtime

64-adder
16 8 5 279 101 31 5 32/2 32 7 1 93.07% 96.77% nr/m/nat 0.28
8 16 9 281 110 15 9 16/- 150 40 4 63.64% 73.33% nr/nm/nat 9.29
4 32 17 296 101 7 - - - - - - - - -

apex2
16 3 3 2592 843 498 1 474/- 1764 734 474 12.93% 4.82% r/nm/1hot 0.38
8 5 3 2446 819 433 2 327/- 1767 696 327 15.02% 24.48% r/nm/1hot 0.13
4 10 3 1944 676 238 3 127/- 1177 444 127 34.32% 46.64% r/nm/1hot 0.12

arbiter*
16 16 1 925 255 227 1 47/4 53 12 2 95.29% 99.12% r/m/nat 0.57
8 32 1 894 241 203 1 23/4 104 25 2 89.63% 99.01% r/m/nat 0.53
4 64 1 832 233 176 1 11/4 165 47 2 79.83% 98.86% r/m/nat 0.51

b17 C*
16 24 2 2491 715 424 1 233/- 1149 472 232 33.99% 45.28% r/nm/1hot 42.89
8 48 2 2278 621 328 1 86/- 746 279 86 55.07% 73.78% r/nm/1hot 85.98
4 95 2 2028 583 235 - - - - - - - - -

e64
16 5 53 592 231 148 5 29/14 74 17 4 92.64% 97.30% r/m/nat 0.12
8 9 44 534 200 113 9 16/9 108 26 4 87.00% 96.46% r/nm/nat 0.08
4 17 59 477 188 91 17 8/- 162 52 3 72.34% 96.70% r/nm/nat 4.68

i2
16 13 1 499 146 126 1 54/- 207 87 6 40.41% 95.24% r/nm/nat 0.25
8 26 1 395 106 84 1 25/- 152 61 25 42.45% 70.24% r/nm/1hot 0.18
4 51 1 306 85 50 1 14/- 130 48 14 43.53% 72.00% r/nm/1hot 0.22

i3
16 9 2 239 84 69 1 40/- 145 62 35 26.19% 49.28% r/nm/1hot 0.09
8 17 2 170 56 40 1 22/- 103 41 20 26.79% 50.00% r/nm/1hot 0.12
4 33 2 136 43 20 2 10/- 89 32 9 25.58% 55.00% r/nm/1hot 29.05

i4
16 12 4 689 208 181 1 83/- 458 184 82 11.54% 54.70% r/nm/1hot 3.85
8 24 4 620 179 150 1 38/- 295 124 37 30.73% 75.33% r/nm/1hot 5.48
4 48 4 524 151 114 - - - - - - - - -

i6
16 9 9 543 168 90 5 95/- 519 231 95 -37.50% -5.56% nr/nm/1hot 0.12
8 18 18 591 161 79 9 46/- 557 188 46 -16.77% 41.77% nr/nm/1hot 0.19
4 35 25 628 147 61 17 22/- 487 135 22 8.16% 63.93% nr/nm/1hot 109.29

i7
16 13 13 983 291 207 5 163/147 540 286 146 1.72% 29.47% r/m/1hot 8.56
8 25 24 1000 276 191 9 79/- 683 259 79 6.16% 58.64% r/nm/1hot 0.17
4 50 39 900 228 131 - - - - - - - - -

toolarge
16 3 3 4617 1531 867 1 305/- 1057 470 305 69.30% 64.82% r/nm/1hot 0.14
8 5 3 4352 1430 760 2 187/- 805 331 187 76.85% 75.39% r/nm/1hot 0.11
4 10 3 3621 1255 439 3 92/- 673 250 92 80.08% 79.04% r/nm/1hot 0.10

of the structural and functional methods, respectively, and the blue,
green, and orange points correspond to results folded by 16, 8 and
4 time-frames, respectively. The data points to the right of the gray
dotted line are the cases where the folded circuits are smaller than
their combinational counterparts. It is interesting to note that 16 of
the 29 results obtained by the functional method achieved circuit
size reduction, while all of the results from the structural method
incurred LUT overhead. The overhead of the structural method is
understandable because circuit folding introduces additional control
logic and flip-flop boundaries to the original circuit that restricts
combinational synthesis.

VII. CONCLUSIONS

We have formulated a circuit folding approach to time multiplexing
on FPGAs. The structural and functional methods, orthogonal to prior
time multiplexing methods, have been proposed and implemented
to demonstrate their potentials to alleviate the I/O-pin bottleneck of
FPGAs. Experiments suggested the scalability of the former and the
optimization power of the latter. It remains future work to combine
structural and functional methods to achieve both scalability and
optimality.
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