
Time-Frame Folding: Back to the Sequentiality
Po-Chun Chien† and Jie-Hong R. Jiang†‡

†Graduate Institute of Electronics Engineering, ‡Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan

Abstract—In this paper we formulate time-frame folding (TFF)
as the reverse operation of time-frame unfolding (TFU), or
commonly known as time-frame expansion in automatic test
pattern generation (ATPG) and (un)bounded model checking.
While the latter converts a sequential circuit into a combinational
one with respect to some expansion bound of k time-frames, the
former attempts the opposite. TFF arises naturally in the context
of testbench generation and bounded strategy generalization, and
yet remains unstudied. Unlike TFU, TFF can be highly non-
trivial as the subcircuit of each time-frame can be distinct.
We propose an algorithm that finds a minimum-state finite
state machine consistent with the input-output behavior of the
combinational circuit under folding. Empirical evaluation of our
method demonstrates its ability in circuit size compaction and
suggests potential use in different application domains.

Index Terms—time-frame expansion, time-frame folding, func-
tional decomposition, state minimization

I. INTRODUCTION

Time-frame folding (TFF) is the reverse operation of time-
frame unfolding (TFU), or time-frame expansion. While TFU
is a well-known technique commonly used in, e.g., automatic
test pattern generation (ATPG) [1] and (un)bounded model
checking of sequential circuits [2], TFF remains largely un-
studied. If fact, TFF finds its natural applications. For example,
to test a sequential design, one may look for a testbench that
produces some set of desired test patterns of length-bounded
input-output sequences. The testbench can be represented
directly by a large combinational circuit, corresponding to a
time-frame expanded version of a sequential circuit, or rep-
resented more compactly by a sequential circuit. For another
example, in model-based testing of software systems [3], [4],
in state identification [5], and in system initialization [6], one
may be asked to compute (non-adaptive or adaptive) homing,
distinguishing, and/or synchronizing sequences. These prob-
lems can be formulated as quantified Boolean formula (QBF)
[7] solving of strategy derivation, e.g., in [8], that computes
the intended sequence. Again, the homing, distinguishing, or
other strategy under synthesis can be represented directly by a
large combinational circuit or more compactly by a sequential
circuit.

However, unlike the straightforward derivation of TFU from
a given sequential circuit, TFF can be highly non-trivial
because the time-frame expanded combinational circuit may
not exhibit a common circuit structure shared among different
time-frames. Perhaps it is this difficulty that makes TFF largely
unaddressed. In this work, we formulate the TFF problem and

provides a general solution that makes no structure assumption
on the combination circuit under time-frame folding.

To the best of our knowledge, this work is the first to address
the time-frame folding issue. Most related prior work on time-
frame issues centered around unfolding, e.g. in [9]. While the
prior work converts a sequential circuit into a combinational
one with respect to some expansion bound k time-frames,
our attempt is the opposite. Regarding our method, we rely
on multiple-output functional decomposition [10] to identify
equivalent states as part of our computation flow. A similar
technique has been applied in sequential equivalence checking
[11].

The main results of this work include: 1) We motivate and
formulate the problem of time-frame folding. 2) We propose
an algorithm that finds a minimum-state finite state machine
consistent with the input-output behavior of the combinational
circuit under folding. 3) We evaluate the proposed algorithm
and demonstrate the computational viability and its ability in
circuit size compaction for potential use in different applica-
tion domains.

The rest of this paper is organized as follows. After essential
preliminaries are provided in Section II, the problem of time-
frame folding is formulated in Section III. Our algorithmic
solution is then presented in Section IV, and implementation
improvement in Section V. Section VI shows the experiment
results, and finally Section VII concludes this paper.

II. PRELIMINARIES

In the sequel, sets are denoted by upper-case letters, e.g.
S; the elements in a set are in lower-case letters, e.g. a ∈ S;
the cardinality of a set S is denoted as |S|. A partition P of
a set S into non-empty subsets Si ⊆ S, for i = 1, . . . , k, is
denoted by P = {S1|S2|...|Sk}, where Si∩Sj = ∅,∀i 6= j and⋃
iSi = S. Each Si is a called a cell of P . Let P and P ′ be

two partitions of a set S. Partition P is said to be a refinement
of P ′, if si, sj ∈ S are in different cells of P ′, then si, sj ∈ S
are in different cells of P . Note that the refinement relation
is not symmetric, i.e., that P is a refinement of P ′ does not
imply that P ′ is a refinement of P . For a set of Boolean
variables X , its set of truth assignments is denoted by [[X]],
e.g., [[X]] = {(0, 0), (0, 1), (1, 0), (1, 1)} for X = {x1, x2}.
Boolean negation, conjuction, and disjunction are denoted by
¬ or overline, ∧ or ·, and ∨ or +, respectively.

A. Functional Decomposition

Given a single-output Boolean function f(X), the func-
tional decomposition [12], [13] problem asks to re-express
f(X) = fµ(Xµ, fλ1(Xλ), . . ., fλk

(Xλ)), where Xλ and Xµ

are called the bound set and free set variables, respectively,
which form a partition on X = {Xλ|Xµ}.1 Let Fλ(Xλ) =
{fλ1

(Xλ), . . . , fλk
(Xλ)}. To avoid trivial decomposition, it

is required that |Fλ| < |Xλ|. Figure 1 illustrates the structural
effect of functional decomposition.

Fig. 1: Effect of functional decomposition.

Functional decomposition can be defined for multi-
ple single-output functions f1(X), . . . , fm(X), and consid-
ered as decomposing a multiple-output function F (X) =
(f1(X), . . . , fm(X)). In [10], a technique called hyperfunc-
tion encoding is introduced to encode a multiple-output func-
tion into a single-output function with dlog2 |F |e auxiliary
pseudo input variables. E.g., for m = 4, two auxiliary
variables A = {α1, α2} can be used to build the hyperfunction
h(X,A) = ¬α1¬α2f1(X) + ¬α1α2f2(X) + α1¬α2f3(X) +
α1α2f4(X). Thereby, a single-output functional decomposi-
tion algorithm can be applied to decompose a multiple-output
function.

Functional decomposition can be achieved based on the
reduced ordered binary decision diagram (ROBDD) [14], [15].
In BDD-based decomposition, the ROBDD of the function
f(X) under decomposition is built with the variable ordering
constraint that the bound set variables Xλ are ordered above
the free set variables Xµ. The cut set of the ROBDD is the
set of BDD nodes controlled by free set variables that are
pointed to by some edge from a node controlled by a bound
set variable. Essentially, for c being the cut set size, then
|Fλ| ≥ dlog2 ce.

Example 1: Figure 2 shows the BDD-based decompo-
sition for function y2 of the time-frame expanded circuit
s27. The cut set {n1, n2, n3} is induced by setting Xλ =
{x11, x12, x13, x14} and Xµ = {x21, x22, x24}. Necessarily two bits
are needed to re-encode the bound set variables to distinguish
the three cut set nodes. Hence, |Fλ| ≥ 2.

B. Finite State Machine

A finite state machine (FSM) can be described by a six-
tuple (I , O, Q, q1, ∆, Ω), where I is the input alphabet,
O is the output alphabet, Q 6= ∅ is a finite set of states,
q1 ∈ Q is the initial state, ∆ : Q × I → Q is the state

1In time-frame folding application, only disjoint decomposition, i.e., Xλ ∩
Xµ = ∅, needs to be considered.

Fig. 2: BDD based functional decomposition.

transition function, Ω : Q× I → O is the output function. A
machine is completely specified if for every state in Q under
every input, its output and next state are defined; otherwise,
it is incompletely specified. An FSM can be alternatively
represented as a state transition graph (STG).

C. Sequential Circuit and Time-Frame Expansion

An FSM can be implemented by a sequential circuit, which
consists of combinational logic netlists realizing the transition
and output functions of the FSM and flip-flops holding current
state values.

The operation of a sequential circuit can be seen as an
iterative combinational circuit that repeats the same compu-
tation but taking timestamped inputs. In time-frame expan-
sion/unfolding, a sequential circuit is unrolled to construct an
iterative combinational circuit. This is done by cascading du-
plicated sequential circuits, where the input and output of the
flip-flops in the adjacent time-frames are connected together.
In this paper, the initial values of the flip-flops (initial state)
is constant-propagated throughout the time-frames. Therefore,
after expansion, the primary output functions of each time-
frame in the expanded circuit can be viewed as a purely
combinational logic which depends on the primary inputs of
all the previous time-frames.

Example 2: Figure 3 shows the circuit structure of s27,
where xi denotes the ith primary input variable, y denotes
the primary output variable, and zi and z′i denote the current-
and next-state variables, respectively, of the ith flip-flop. Let
vt denote the variable v instantiated at the tth time-frame.
Figure 4 shows the circuit of s27 after three time-frames of
expansion and simplification with constant propagation of the

initial state values (z01 , z
0
2 , z

0
3) = (0, 0, 0). Note that after the

time-frame expansion all primary output functions are purely
combinational, and after further circuit simplification the state
transition functions cannot be clearly identified.

Fig. 3: Sequential circuit s27.

III. PROBLEM FORMULATION

The problem of time-frame folding can be stated as follows.
Problem Statement 1 (Time-Frame Folding): Given a k-

iterative combinational circuit CC with inputs X1, . . . , Xk

for Xt = {xt1, . . . , xtn} and outputs Y 1, . . . , Y k for Y t =
{yt1, . . . , ytm}, find a sequential circuit CS with inputs X =
{x1, . . . , xn} and outputs Y = {y1, . . . , ym} such that the
input-output behavior of CS within the first k time-frames is
the same as that of CC . Moreover, the number of states of CS
is minimized.
Note that the statement makes no assumption on the circuit
structure of CC but only its inputs and outputs in an iterative
form, crucial for time-frame folding.

IV. ALGORITHM

A. Overview of Algorithmic Flow

The computation flow is shown in Figure 5. Given as input
an iterative combinational circuit CC with inputs X1, . . . , XT

for Xt = {xt1, . . . , xtn} and outputs Y 1, . . . , Y T for Y t =
{yt1, . . . , ytm}, the algorithm returns a sequential circuit with
inputs X = {x1, . . . , xn} and outputs Y = {y1, . . . , ym}
consistent with CC in T time-frames. It consists of the follow-
ing steps: 1) state identification by functional decomposition,
2) state transition reconstruction, 3) state minimization, and
4) state encoding. The steps are detailed in the following
subsections.

B. State Identification via Functional Decomposition

Given an iterative combinational circuit CC with inputs
X1, . . . , XT for Xt = {xt1, . . . , xtn} and outputs Y 1, . . . , Y T

for Y t = {yt1, . . . , ytm}, we show that the notion of states
at time-frame t is induced by the output functions of
Y t+1, . . . , Y T . Note that the outputs Y t observed at time t
induce an equivalence relation on the set of input assignments

[[X1 ∪ . . . ∪Xt]]. Effectively, the equivalence relation forms
a partition on [[X1 ∪ . . . ∪Xt]]. Assume that the partition on
[[X1 ∪ . . . ∪Xt]] induced by the equivalence relation imposed
by the outputs Y t+1, . . . , Y T has k cells (equivalence classes).
Then we know the signals communicating from iteration t to
iteration t + 1 in circuit CC (i.e., the information of inputs
X1, . . . , Xt needed to compute outputs Y t+1, . . . , Y T) must
have at least dlog2 ke bits. In the functional decomposition
viewpoint of Figure 1, by decomposing the hyperfunction
f of the output functions of Y t+1 ∪ . . . ∪ Y T with bound
set variables Xλ = X1 ∪ . . . ∪ Xt and free set variables
Xµ = Xt+1 ∪ . . . ∪ XT ∪ A, where A is the set of pseudo
input variables introduced to encode functions Y t+1∪. . .∪Y T ,
the number of bits needed to communicate from Fλ to fµ
in the picture of Figure 1 is at least dlog2 ke. Essentially
the k equivalence classes correspond to the minimum states
needed to distinguish the input assignments [[X1 ∪ . . . ∪Xt]]
for the outputs Y t+1, . . . , Y T to produce correct valuation. Let
Qt = {qt1, ..., qtk} be the states representing the k equivalence
classes, and let τ t = {τqt1 , . . . , τqtk} be the set of transition
conditions, that is, characteristic functions, each characterizing
a set of equivalent input assignments in an equivalence class
of [[X1 ∪ . . . ∪Xt]]. Then Qt and τ t can be obtained from
ROBDD-based functional decomposition by noting that Qt

corresponds to the cut set and τ t corresponds to the path
conditions from the root node leading to the cut set nodes.
In the sequel, we let St = {(qt1, τqt1), . . . , (qtk, τqtk)} be the set
of state and transition condition pairs at time t.

Example 3: To demonstrate how Qt and τ t are obtained
from ROBDD-based functional decomposition, we take y2

in Figure 2 as an example. To compute S1, we build the
hyperfunction h = αy2 +¬αy3 of the output functions y2 and
y3 as illustrated in Figure 6a. By performing functional decom-
position on h, we obtain S1 = {(q11 , τq11), (q12 , τq12), (q13 , τq13),
(q14 , τq14)}, where τ1 = {¬x12x14, ¬x11(x12x

1
3 + ¬x12¬x14),

x11(x12x
1
3 + ¬x12¬x14), x12¬x13}.

It should be noted that to compute S1 both functions y2 and
y3 are needed. Considering only y2 for the derivation of S1

would be flawed due to the fact that two states in Q1 that seem
to be equivalent at output y2 may possibly be distinguished at
output y3. Essentially the partition induced by both y2 and y3
is a refinement of the partition induced by y2 only.

For S2 derivation, functional decomposition on y3 should
be performed as is illustrated in Figure 6b.

Given an iterative combinational circuit CC , the state iden-
tification procedure for computing S0, . . . , ST is outlined in
Algorithm 1. In line 1, S0 and ST are singleton sets as Q0

has a single initial state q01 and QT has a single don’t-care
destination state qT∗ . Moreover, the transition conditions to q01
and qT∗ are tautologies. In lines 2-8, St for t = 1, . . . , T − 1
is computed through functional decomposition in line 7 on
the hyperfunction encoded in line 4. Procedure HyperEncode
encodes the output functions Y t+1, ..., Y T into a single-output
function h using the set A of fresh new variables α1, . . . , αk
for k = dlog2(|Y t+1| + · · · + |Y T |)e. Procedure Decompose
performs functional decomposition on the hyperfunction h and

Fig. 4: Time-frame expanded circuit of s27, with initial state propagation and simplification.

Fig. 5: computation flow

extract the cut set and corresponding transition conditions.

Algorithm 1 StateIdentify

Input: CC with inputs X1, ..., XT and outputs Y 1, ..., Y T

Output: {S0, S1, ..., ST }
1: S0 := {(q01 , 1)}; ST := {(qT∗ , 1)};
2: for t = 1, ..., T − 1 do
3: k := dlog2(|Y t+1|+ · · ·+ |Y T |)e;
4: h := HyperEncode(Y t+1 ∪ ... ∪ Y T , A =
{α1, . . . , αk});

5: Xλ := X1 ∪ ... ∪Xt;
6: Xµ := Xt+1 ∪ ... ∪XT ∪A;
7: St := Decompose(h,Xλ, Xµ);
8: end for
9: return {S0, S1, ..., ST };

C. Transition Reconstruction

With the sets S0, . . . , ST of state and transition condition
pairs being obtained, the next step is to determine the transi-
tions among the states and construct the state transition graph.

Given an iterative combinational circuit CC , and the sets
S0, . . . , ST as input, Algorithm 2 computes, for every pair
(qt−1i , qtj) of states in adjacent two time-frames, the input con-
dition and output response under the transition from qt−1i to qtj .
Essentially, the input transition condition can be characterized
by the QBF

ϕti,j = ∃X1, . . . , Xt−1.τqt−1
i
∧ τqtj (1)

and the output transition response can be characterized by the
set of QBFs

ψti,k = ∃X1, . . . , Xt−1.τqt−1
i
∧ ytk (2)

(a) Functional decomposition for S1 derivation.

(b) Functional decomposition for S2 deriva-
tion.

Fig. 6: State identification.

for ytk ∈ Y t. In line 5, the procedure TransitionTuple returns
the four-tuple (qt−1i , qtj , ϕ

t
i,j , {ψti,k | ytk ∈ Y t}). The algorithm

returns the collected four-tuples R for all state transitions.
According to R, one can construct a state transition graph
(STG).

Example 4: To illustrate, we derive the input condition
for the transition from q11 to q21 shown on Figure 7a,
where τq11 = ¬x12x14, τq21 = ¬x12x14 · (¬x21(¬x22 + x23) +

x21¬x22x24)+¬x11(x12x
1
3 +¬x12¬x14) ·¬x22x24. y2 = (¬x12x14x21 +

¬x11(¬x12¬x14+x12x
1
3))·(x22+¬x24)+x11(x12+¬x14)+¬x11x12¬x13.

The input transition condition and the output transition re-
sponse can be derived by: ϕ2

1,1 = ∃X1.τq11∧τq21 = ¬x21(¬x22+

Algorithm 2 TransitionReconstruct

Input: CC , {S0, . . . , ST }
Output: transition four-tuples R

1: R := ∅;
2: for t = 1, ..., T do
3: foreach (qt−1i , τqt−1

i
) ∈ St−1 do

4: foreach (qtj , τqtj) ∈ St do
5: R := R ∪ TransitionTuple(τqt−1

i
, τqtj , Y

t);
6: end for
7: end for
8: end for
9: return R;

x23)+x21¬x22x24 and ψ2
1 = ∃X1.τq11∧y

2 = x21(x22+¬x24), which
corresponds to the edge labeled with ”00--/0, 011-/0, 10-1/0”
between q11 and q21 in Figure 7a.

D. State Minimization

Notice that although by functional decomposition we guar-
antee that |St| is minimum, the STG constructed from R
may not be state minimum. It is because equivalent states
in different time-frames are not yet considered. In the STG
derived from time-frame folding, there is a unique initial state
q01 and final don’t-care state qT∗ . As the STG is incompletely
specified at state qT∗ , the flexibility provides room for state
minimization. In our implementation, we apply the SAT-
based exact minimization algorithm MeMin [16] for STG
simplification.

Example 5: The STG in Figure 7a can be minimized to
that in Figure 7b. The number of states reduces from 10
(including the unspecified state q∗) to 5. In Figure 7b, each
state is annotated with its compatible states in Figure 7a. In
each time-frame except for the last, the states being identified
are minimized such that none of them can be merged into the
same state. For instance, the states reached at the first time-
frame q11 , q12 , q13 and q14 in Figure 7a correspond to different
states q′3, q′2, q′5 and q′1, respectively, in Figure 7b.

E. State Encoding

To transform an STG into a sequential circuit, a final state-
encoding step has to be performed. Let Q be the state set of
the STG. In our implementation, we try two different encoding
schemes: 1) natual encoding, which uses dlog2 |Q|e bits, and
2) one-hot encoding, which uses |Q| bits, each of which
represents a state in Q.

V. IMPLEMENTATION ISSUES

To improve state identification, we make two modifications
to the StateIdentify algorithm:
• Reverse-chronological order enumeration: The index t in the

for-loop in line 2 enumerates from 1 to T−1. As t increases,
the number |Y t ∪ ... ∪ Y T | of functions that have to be
encoded decreases. Also there is a huge overlap of functions
to be encoded at two consecutive time-frames t and t +
1, which is {Y t+1, ..., Y T }. As a result, by reversing the

(a) STG from folding 3 time-frames (before state minimization).

(b) STG from folding 3 time-frames (after state minimiza-
tion).

(c) STG of original s27 circuit.

Fig. 7: State transition graphs.

enumeration order for t from T − 1 to 1, the hyperfunction
h can be built incrementally by adding Y t to h one at a
time in each iteration.

• Re-encoding hyperfunction: Now that the state and tran-
sition condition pairs identified at each time-frame are
constructed in a reverse-chronological order, after we obtain
St by decomposing the hyperfunction h built at time frame
t+1, the variable in Xt+1 is no longer relevant in deciding
partition of [[X1 ∪ ... ∪Xt]]. Hence, we can re-encode h into
a more compact representation with less variables to reduce
the circuit size. Essentially the variables Xt+1 in h can be
replaced with a new set of variables of size dlog2 |St|e in a
way preserving the cut set nodes of h. Therefore h can be
represented more compactly. The re-encoded hyperfunction
is then be passed down to the next iteration.

VI. EXPERIMENTAL RESULTS

The proposed computation of state identification and transi-
tion reconstruction (Algorithms 1 and 2) was implemented in
the C++ language as a command, named “timefold”, within
the ABC system [17] and used CUDD [18] as the underlying
BDD package. For state minimization, package MeMin [16]
was used.

Our method was evaluated with respect to three sets of
benchmark circuits. Two were obtained from unfolded and
simplified ISCAS and ITC circuits, and one was obtained
from QBF solving of adaptive homing sequences [8]. The
experiments were conducted on a server with Intel(R) Xeon(R)
CPU E5-2620 v4 of 2.10 GHz and 126 GB RAM. A timeout
limit of 300 seconds is imposed on command timefold, and
the same limit is imposed on MeMin for state minimization.
Also an expansion limit of 5000 time-frames was imposed.

The results on ISCAS and ITC benchmarks are shown
in Table I, where Columns 2-5 list the numbers of primary
inputs, primary outputs, latches, and AIG nodes, respectively,
after optimization of the original sequential circuits, Column 6
lists the maximum time-frames that can be expanded and
folded back within the timeout limit, Columns 7 and 8 list
the numbers of states of the folded circuit before and after
state minimization, respectively, and Column 9 list the number
of flip-flops in the resultant sequential circuit under natural
encoding. For an entry in the table containing two values
separated by “/”, it indicates that MeMin reached its timeout
limit before timefold reached its maximum number of time-
frames. The value on the left of “/” shows the data that both
timefold and MeMin are executed successfully, while the
value on the right shows the data that only timefold can be
done within the timeout limit. Circuits b01 and b02 reached
the 5000 time-frame limit and are marked with the “*” sign.

From the table, the numbers of foldable time-frames within
300 seconds vary to some extent, roughly proportional to the
growth rate of the number of states. On the other hand, the
performance of MeMin exhibited somewhat non-robustness.
For example, for s382 expanded with 50 time-frames, the
10617 states can be successfully minized to 1282 states within
300 seconds; in contrast, for s713 expanded with 3 time-
frames, the 11 states cannot be minimized within 300 seconds.
For the homing sequence benchmarks, the results are shown
in Table II. As the depths of the adaptive homing strategies
are not large, our method successfully generates all sequential
circuits.

To better understand the relation among the number of
states, the number of time-frames, and the runtime, circuits
b07, b18, s386, s1494, and s15850 were selected for
study. Figure 8 shows the relation between the number of states
and the number of expanded time-frames. It can be observed
that the number of states before minimization (right y-axis)
constantly increased with the number of time-frames, whereas
the number of states after minimization (left y-axis) tended to
saturate after a certain number of time-frames. (Note that the
left and right y-axes are of different scales.) This phenomenon

TABLE I: Results of time-frame folding on ISCAS and ITC
benchmarks.

circuit #PI #PO #FF #gate #frame #state #state-m #FF’

b01 2 2 5 38 5000* 22493 18 5
b02 1 1 4 16 5000* 9997 8 3
b03 4 4 21 55 76 21182 631 10
b04 11 8 66 351 4 132 130 8
b05 1 26 34 422 569 34268 69 7
b06 2 6 8 29 348 4139 13 4
b07 1 8 39 308 491 35221 83 7
b08 9 4 21 125 66 24215 798 10
b09 1 1 28 120 24/28 10241/42981 3795/- 12/16
b10 11 6 17 162 16/22 3248/8116 602/- 10/13
b11 7 6 30 449 15/20 2542/24122 676/- 10/15
b12 5 6 119 919 97 7621 1004 10
b13 10 10 45 171 117/141 10276/127884 139/- 8/17
b14 32 54 215 3833 2 3 2 1
b15 36 70 415 6897 6 11 8 3
b17 37 97 605 8069 7/11 103/13826 93/- 7/14
b18 37 23 129 2351 76 12756 382 9
b20 32 22 429 8417 2 3 1 0
b21 32 22 429 8339 2 3 1 0
b22 32 22 611 12693 2 3 1 0
s27 4 1 3 7 193 960 5 3

s208.1 10 1 8 48 182 12556 129 8
s298 3 6 14 74 50 5166 135 8
s344 9 11 15 96 5/31 1262/27426 863/- 10/15
s349 9 11 15 96 5/35 1262/31490 863/- 10/15
s382 3 6 21 87 50 10617 1282 11
s386 7 7 6 81 105 1328 13 4
s400 3 6 21 89 50 10617 1282 11

s420.1 18 1 16 101 184 12814 129 8
s444 3 6 21 95 50 10617 1282 11
s510 19 7 6 207 45/148 967/5804 44/- 6/13
s526 3 6 21 91 50 10651 1285 11
s641 35 24 14 97 2/4 3/75 2/- 1/7
s713 35 23 14 98 2/3 3/11 2/- 1/4
s820 18 19 5 216 56 1192 24 5
s832 18 19 5 211 51 1072 24 5

s838.1 34 1 32 213 184 12814 129 8
s953 16 23 29 277 9/18 270/4634 111/- 7/13
s1196 14 14 18 397 1/2 2/460 1/- 0/9
s1238 14 14 18 384 1/2 2/460 1/- 0/9
s1423 17 5 73 433 6/7 498/2731 396/- 9/12
s1488 8 19 6 500 67 2670 48 6
s1494 8 19 6 498 65 2574 48 6
s5378 35 49 127 740 1 2 1 0

s9234.1 36 39 129 750 0/2 -/10 -/- -/4
s13207 31 121 193 550 10/12 4666/16042 4665/- 13/14

s13207.1 62 152 253 693 0 - - -
s15850 14 87 128 374 643/2501 650/2508 11/- 4/12

s15850.1 77 150 436 2324 0 - - -
s35932 35 320 1472 7297 5 90 53 6
s38417 28 106 1345 7197 2/3 6/114 5/- 3/7
s38584 12 278 784 4479 5 162 141 8

s38584.1 38 304 1141 8250 0 - - -

TABLE II: Results of time-frame folding on homing sequence
benchmarks.

name #PI #PO #gate #frame #state #state-m
5s2i0 c 3 3 1 3 6 4
5s2i0 r 3 3 0 3 4 1
5s2i2 c 4 4 1 4 9 4
5s2i2 r 4 4 2 4 8 5

10s5i1 c 12 12 175 4 35 29
10s5i4 c 12 12 105 4 30 24

is expectable as all inequivalent states should be distinguished
eventually. On the other hand, Figure 9 shows the relation
between the total runtime of timefold and MeMin and the
number of time-frames. Their positive correlation is expected.

We verified the consistency between the constructed se-
quential circuits and their corresponding expanded iterative
combinational circuits. In the cases of our experiments, we ob-
served that the constructed sequential circuit tends to become
sequentially equivalent to its original sequential circuit when
the number of expanded time-frames is sufficiently large. We
call this phenomenon as a fixed point. However, the sequential
equivalence may not happen immediately at the time-frame
when the number of states starts to saturate. Let q1 be the

Fig. 8: #state vs. #time-frame.

Fig. 9: Total runtime vs. #time-frame.

initial state of the state transition graph, mi,j be the length of
the shortest path from state qi to state qj , and ni,j be the length
of the shortest sequence distinguishing states qi and qj . Also
let m be the maximum length among the shortest paths from
the initial state to any other states, i.e., m = max{m1,j},
for any qj ∈ Q, j 6= 1; let n be the maximum length
among the shortest sequences distinguishing any state pairs,
i.e., n = max{ni,j}, for any qi, qj ∈ Q, i 6= j. In fact, if
the reachable state sets grow monotonically during time-frame
expansion, then the fixed point is guaranteed by expanding the
circuit no greater than m + n time-frames.

Table III shows the time-frame numbers when the number
of states starts to saturate and when the obtained circuit starts
to become sequentially equivalent to the original circuit. Note
that not every considered circuit is listed in Table III, because
some of them are not able to reach these two conditions
within their maximally expanded time frames. Also the table
shows the numbers of flip-flops and gates of the folded
sequential circuit under two different encoding schemes, and

the corresponding reduction ratio on the numbers of flip-flops
and gates compared to those of its corresponding original
sequential circuit. As generally observed, natural encoding can
result in fewer flip-flops, but require more gates, while one-hot
encoding can achieve better gate count reduction, but require
more flip-flops.

To verify that our proposed method indeed has the ability
in circuit size compaction, we compared the sizes of the
expanded combinational circuits to their folded sequential cir-
cuits in terms of AIG nodes. The ISCAS and ITC benchmark
circuits selected for comparison are the ones that have reached
the number of time-frames to observe sequential equivalence,
and are expanded by that number of time-frames. Note that for
time-frame folding, there is no need to expand more than that
number of time-frames, since the folded sequential circuit will
remain the same, while the expanded combinational circuit
will continue to grow in size. Additionally, homing sequence
benchmarks are also included for comparison. The results
are plotted in Figure 10, where black data points correspond
to ISCAS and ITC benchmark circuits, and the blue ones
correspond to homing sequence benchmarks. Both natural and
one-hot encoding schemes were applied, and the one resulted
in a smaller circuit size was taken for comparison. The data
points on the right of the gray dotted line correspond to
the cases where the obtained sequential circuits are of size
smaller than their combinational counterparts. We observed
that larger circuits tend to benefit more from our method, as
the combinational circuits with over 1500 AIG nodes, when
folded into sequential circuits, are all reduced significantly in
size. Note that the upper-most (worst-case) point in Figure 10
is the circuit b03 expanded with 14 time-frames. Although
time-frame folding does not achieve compaction in this case,
it is expected that, when more time-frames are to be expanded,
the iterative combinational circuit size will keep growing while
the folded sequential circuit size will remain the same.

Fig. 10: Circuit size comparison.

TABLE III: Results on folding with fixed points reached.

circuit #time-frame expanded circuit natural encoding one-hot encoding
state saturate fixed point #gate #FF #gate reduction (%) #FF #gate reduction (%)

b01 9 9 52 5 109 0.0 -186.8 18 53 -260.0 -39.5
b02 6 10 4 3 16 25.0 0.0 8 15 -100.0 6.3
b03 14 14 189 10 8947 52.4 -16167.3 631 1848 -2904.8 -3260.0
b05 69 133 62635 7 52 79.4 87.7 69 11 -102.9 97.4
b06 6 7 62 4 82 50.0 -182.8 13 45 -62.5 -55.2
b07 85 85 24438 7 91 82.1 70.5 83 94 -112.8 69.5
b08 55 55 6173 10 3395 52.4 -2616.0 798 1265 -3700.0 -912.0
b18 50 50 74461 9 2516 93.0 -7.0 382 1134 -196.1 51.8
s27 3 5 29 3 25 0.0 -257.1 5 42 -66.7 -500.0

s298 20 23 1243 8 1489 42.9 -1912.2 135 785 -864.3 -960.8
s386 8 9 297 4 124 33.3 -53.1 13 74 -116.7 8.6
s820 12 13 2558 5 276 0.0 -27.8 24 8639 -380.0 -3899.5
s832 12 13 2612 5 248 0.0 -17.5 24 10075 -380.0 -4674.9
s1488 23 23 11298 6 578 0.0 -15.6 48 406 -700.0 18.8
s1494 23 23 11367 6 526 0.0 -5.6 48 364 -700.0 26.9

s15850 5 5 24 4 28 96.9 92.5 11 24 91.4 93.6

VII. CONCLUSIONS

We have formulate the time-frame folding problem, and
provided a computational solution based on functional de-
composition for state identification and transition reconstruc-
tion. Our method guarantees the sequential circuit folded
from an iterative combinational circuit is state minimized.
Experimental results demonstrate the benefit of our method in
circuit compaction from an iterative combinational circuit to its
sequential counterpart. Our method can be useful in testbench
generation, sequential synthesis of bounded strategies, and
other applications.

ACKNOWLEDGMENTS

The authors thank Kuan-Hua Tu for providing the homing
sequence benchmarks, Natalia Kushik and Nina Yevtushenko
for valuable discussions motivating this work, and Alan
Mishchenko for helpful synthesis suggestions. This work was
supported in part by the Ministry of Science and Technology
of Taiwan under grants 105-2221-E-002-196-MY3, 105-2923-
E-002-016-MY3, and 108-2221-E-002-144-MY3.

REFERENCES

[1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architec-
tures: Design for Testability (Systems on Silicon). Morgan Kaufmann
Publishers Inc., 2006.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Proceedings of International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pp. 193–207, 1999.

[3] S. Sandberg, “Homing and synchronizing sequences,” in Model-Based
Testing of Reactive Systems: Advanced Lectures, pp. 5–33, 2005.

[4] N. Kushik, J. López, A. Cavalli, and N. Yevtushenko, “Improving
protocol passive testing through “gedanken” experiments with finite
state machines,” in Proceedings of International Conference on Software
Quality, Reliability and Security (QRS), pp. 315–322, 2016.

[5] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines - a survey,” Proceedings of the IEEE, vol. 84, no. 8,
pp. 1090–1123, 1996.

[6] J.-K. Rho, F. Somenzi, and C. Pixley, “Minimum length synchronizing
sequences of finite state machine,” in Proceedings of Design Automation
Conference (DAC), pp. 463–468, 1993.

[7] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of
Satisfiability. IOS Press, 2009.

[8] H.-E. Wang, K.-H. Tu, J.-H. R. Jiang, and N. Kushik, “Homing sequence
derivation with quantified Boolean satisfiability,” in Proceedings of
International Conference on Testing Software and Systems (ICTSS),
pp. 230–242, 2017.

[9] A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony, and
P. Nalla, “GLA: Gate-level abstraction revisited,” in Proceedings of
the Conference on Design, Automation and Test in Europe (DATE),
pp. 1399–1404, 2013.

[10] J.-H. R. Jiang, J.-Y. Jou, and J.-D. Huang, “Compatible class encoding
in hyper-function decomposition for FPGA synthesis,” in Proceedings
of Design Automation Conference (DAC), pp. 712–717, 1998.

[11] J.-H. R. Jiang and R. K. Brayton, “On the verification of sequential
equivalence,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 22, no. 6, pp. 686–697, 2003.

[12] R. Ashenhurst, The Decomposition of Switching Functions, vol. 29,
pp. 74–116. Computation Lab, Harvard University, 1959.

[13] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM
Journal of Research and Development, vol. 6, no. 2, pp. 227–238, 1962.

[14] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “Bdd based decomposition
of logic functions with application to FPGA synthesis,” in Proceedings
of Design Automation Conference (DAC), pp. 642–647, 1993.

[15] S.-C. Chang, M. Marek-Sadowdka, and T. Hwang, “Technology map-
ping for TLU FPGAs based on decomposition of binary decision
diagrams,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, no. 10, pp. 1226–1236, 1996.

[16] A. Abel and J. Reineke, “MEMIN: SAT-based exact minimization of
incompletely specified Mealy machines,” in Proceedings of International
Conference of Computer-Aided Design (ICCAD), pp. 94–101, 2015.

[17] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proceedings of International Conference on Com-
puter Aided Verification (CAV), pp. 24–40, 2010.

[18] F. Somenzi, “CUDD: CU decision diagram package (release 2.4.1),”
University of Colorado at Boulder, 2005.

