
Compatible Equivalence Checking of X-Valued Circuits
Yu-Neng Wang∗§, Yun-Rong Luo∗§, Po-Chun Chien†§, Ping-Lun Wang∗, Hao-Ren Wang†, Wan-Hsuan Lin∗,

Jie-Hong Roland Jiang∗† and Chung-Yang Ric Huang∗†
∗ Department of Electrical Engineering, National Taiwan University

† Graduate Institute of Electronics Engineering, National Taiwan University

Abstract—The X-value arises in various contexts of system
design. It often represents an unknown value or a don’t-
care value depending on the application. Verification of X-
valued circuits is a crucial task but relatively unaddressed. The
challenge of equivalence checking for X-valued circuits, named
compatible equivalence checking, is posed in the 2020 ICCAD
CAD Contest. In this paper, we present our winning method
based on X-value preserving dual-rail encoding and incremental
identification of compatible equivalence relation. Experimental
results demonstrate the effectiveness of the proposed techniques
and the outperformance of our approach in solving more cases
than the commercial tool and the other teams among the top 3
of the contest.

I. INTRODUCTION

Equivalence checking (EC) is an essential procedure in
system design to ensure functional correctness. Conventional
combinational equivalence checking (CEC) [1]–[4] performs
reasoning over binary valued logic. However, there are verifi-
cation tasks that require reasoning over multi-valued logic.

In register transfer level (RTL) design, the notion of X-
value emerges naturally in various contexts. The X-value may
represent an unknown value, e.g., due to uninitialized signals,
due to power shut off in low-power design, due to a wire driven
by multiple sources, and so on. It may also represent a don’t
care value, e.g., due to out of range in part-select addressing,
due to an unconstrained condition in a case statement, due
to don’t care of flip-flop input under the reset condition, and
so on. When X-values correspond to don’t cares, synthesis
tools may exploit them for circuit optimization. Equivalence
verification in the presence of X-values is an important subject
and is posed as a challenge, compatible equivalence checking,
in the 2020 ICCAD CAD Contest.

CEC has long been an important research topic in elec-
tronic design automation (EDA). The approaches to CEC have
evolved from binary decision diagram based methods, e.g., [1],
[2], to more scalable and-inverter graph (AIG) and Boolean
satisfiability (SAT) based ones, e.g., [3], [4]. In [4], several
improvements to AIG-based checker are proposed using fast
logic synthesis techniques, such as rewriting [5], to reduce the
AIG size. These methods do not handle X-values.

For equivalence checking of X-valued circuits, the X-values
serve as don’t cares when the equivalence between two circuits
is to be checked. The problem was studied in [6], where a
methodology similar to standard CEC was proposed. As their
formulation fails to model the compatible equivalence relation
between X-value and Boolean values in SAT solving, false
counterexamples have to be ruled out separately by simulation.

§ Equal contribution

This process leads to limited scalability. Besides EC, there are
other verification tasks related to X-values. For example, in
[7] symbolic trajectory evaluation (STE), an industrial-strength
formal method based on symbolic simulation, is applied with a
ternary system model to verify digital circuits. In [8], finding
bugs caused by uninitialized registers in an RTL design is
considered. Despite these related efforts, the X-valued CEC
problem remains relatively unaddressed.

Binary encoding is an essential step to represent multi-
valued logic with Boolean circuits. E.g., in [9], different
encoding schemes for four-valued logic and their efficiency
in stuck-at fault test pattern generation are discussed. In [10],
symmetry encoding for symbolic multi-valued functions is
proposed aiming at improving synthesis quality. Nevertheless,
the effective encoding of X-valued (ternary-valued) logic for
equivalence checking is not well-studied in the literature.

In this paper, we present our winning method tackling the
compatible equivalence checking problem of the 2020 ICCAD
CAD Contest. The techniques of X-value preserving dual-
rail encoding and incremental identification of compatible
equivalence relation are proposed, and integrated into the state-
of-the-art CEC flow. Experimental evaluation is conducted to
demonstrate the efficiency of our method compared to other
winning teams in the contest, and the effectiveness of the
proposed techniques.

The rest of this paper is organized as follows. With Sec-
tion II providing the essential preliminaries, the problem of
compatible equivalence checking is then formulated in Sec-
tion III. Our proposed solutions are presented in Sections IV
and V. Section VI evaluates the experimental results, and
finally Section VII concludes this paper.

II. PRELIMINARIES

In this paper, sets are denoted by capital letters, e.g., S, and
the elements in a set are denoted by minuscule letters, e.g.,
s ∈ S. Boolean negation, conjunction, and disjunction are
denoted by ¬, ∧ and ∨, respectively. By convention, Boolean
conjunction operators are sometimes omitted. A literal l is
either a Boolean variable v or its negation ¬v. A clause is
a disjunction of literals. A conjunction of a set of clauses is
referred to as a conjunctive normal form (CNF) formula. An
assignment to a Boolean variable x is to give x a Boolean
value in B = {0, 1}. A CNF formula F over variables V =
{v1, . . . , vn} is called satisfiable if there exists an assignment
to V making F valuate to true. Otherwise, F is unsatisfiable.

Table I: Function tables of ternary valued primitive gates.

(a) ô = AND(â, b̂)

â
b̂ 0 1 x

0 0 0 0
1 0 1 x
x 0 x x

(b) ô = NOT(â)

â ô
0 1
1 0
x x

(c) ô = DC(ĉ, d̂)

d̂

ĉ
0 1 x

0 0 1 x
1 x x x
x x x x

(d) ô = MUX(ŝ, â, b̂)

ŝ = 0 ŝ = 1 ŝ = x

â
b̂ 0 1 x

â
b̂ 0 1 x

â
b̂ 0 1 x

0 0 0 0 0 0 1 x 0 0 x x
1 1 1 1 1 0 1 x 1 x 1 x
x x x x x 0 1 x x x x x

A. Ternary-Valued Logic

A signal/variable in an X-valued circuit is ternary and can
take on a value in T = {0, 1, x} = B∪{x}, where x represents
an unknown or don’t care value. In the sequel, the term X-
value refers to value x. To distinguish a ternary variable from
a Boolean variable, a hatted variable v̂ denotes its ternary
characteristics in contrast to its Boolean counterpart v. In
the sequel, we reuse the symbols of Boolean connectives for
ternary valued logic.

According to [11], ternary-valued primitive gates can be
defined and are used in X-valued circuits. Among others, the
operations of the AND and NOT gates are specified in Table I
(a) and (b), respectively. Two additional gates DC and MUX,
essential in modeling industrial designs, are specified in the
2020 ICCAD CAD Contest with their operations shown in
Table I (c) and (d), respectively.

The compatibility between two values in T is defined as
follows.

Definition 1. Given two values â, b̂ ∈ T, â is compatible
equivalent to b̂ if (â, b̂) ∈ {(0, 0), (1, 1), (x, 0), (x, 1), (x, x)}.
Otherwise, â is not compatible equivalent to b̂, i.e., (â, b̂) ∈
{(0, 1), (1, 0), (0, x), (1, x)}.

B. Combinational Equivalence Checking

In a modern CEC flow, two circuits G and R under checking
are combined into a single miter circuit [12] by XORing their
corresponding outputs OG and OR, and ORing these XOR
gates as the primary output. Thereby, G and R are equivalent
if and only if their miter circuit has output equals 0 for all
input assignments.

The state-of-the-art CEC engine use the and-inverter graph
(AIG) [3] to represent the logic function, and perform struc-
tural hashing to detect structural similarities in the AIG.
Moreover, functionally equivalent AIG nodes are detected
and merged to reduce the AIG size. Simulation is employed
to partition the set of AIG nodes into potentially functional
equivalent classes, and the pairwise equivalence within a
class is verified by SAT solving. This step is known as SAT
sweeping. The equivalence of the two circuits is finally verified

G

R

Combinational
Mitering

Initial
Optimization SAT sweeping

CNF ⇐ circuitSAT solvingEQ/NEQ/Abort

Figure 1: CEC flow.

by SAT solving at the output of miter. Prior work [4] has
proposed heuristics to interleave SAT sweeping with low-effort
logic syntheses. Figure 1 shows the CEC flow.

III. PROBLEM FORMULATION

Following [13], the compatible equivalence checking prob-
lem can be formulated as follows.

Problem Statement 1 (Compatible Equivalence Checking).
Given two X-valued combinational circuits, the golden circuit
Ĝ and the revised circuit R̂, consisting of primitive gates,
DC, MUX, and/or constant values in T and having identical
primary inputs I = {pi | i = 1 . . . n}, let the primary outputs
of Ĝ and R̂ be ÔG = {ôg,i | i = 1 . . .m} and ÔR = {ôr,i |
i = 1 . . .m}, respectively. We are asked to determine whether
Ĝ is compatible equivalent to R̂, that is, ôg,i is compatible
equivalent to ôr,i, for i = 1, . . . ,m and for any assignment in
Bn to I . If so, report EQ. Else, report NEQ with an assignment
to I making some ôg,i not compatible equivalent to ôr,i.

We note that the relation of compatible equivalence is not
symmetric, that is, Ĝ being compatible equivalent to R̂ is not
the same as R̂ compatible equivalent to Ĝ. Note also that the
above formulation assumes the input variables I are Boolean.
Hence the X-values of an X-valued circuit can only originate
from the DC gates.

IV. SAT ENCODING

To achieve CEC-based compatible equivalence checking,
CEC has to take x-value into account and requires two
modifications: dual-rail encoding and constructing miter for
compatible equivalence.

A. Dual-Rail Encoding

To encode the compatible equivalence checking problem
for SAT solving, we employ dual-rail encoding to transform
ternary valued logic over T into Boolean logic over B.
Essentially a 2-bit Boolean value (o0, o1) to encode symbols
{0, 1, x}. Among other possibilities1, we mainly explore two
encoding schemes: the x-preserving encoding, denoted Exp,
and the symmetric encoding, denoted Esym, defined in Table
II (a) and (b), respectively. Given a ternary variable ô ∈ T,
we denote its Exp-encoded and Esym-encoded signal (o0, o1)
by Exp(ô) and Esym(ô), respectively. In Exp, o0 corresponds
to the original Boolean bit and o1 is the x-bit, for o1 = 1 if

1 We also studied one-hot encoding using 3 bits. As the encoding is not as
good as the considered dual-rail encoding, it is excluded from our discussion.

Table II: Dual-rail encoding schemes.

(a) x-preserving encoding Exp

T 0 1 x
o0, o1 00 10 01, 11

(b) symmetry encoding Esym

T 0 1 x
o0, o1 10 01 00

and only if ô = x. In Esym, the values of (o0, o1) for 0, 1 ∈ T
are bitwise complement. An in-depth comparison of the two
encoding schemes is to be made in Section VI-A.

To model the behavior of logic gates specified in Sec-
tion II-A, we derive the logic formulas for each gate under Exp
and Esym as listed in Table III. We note that Esym is identical
to the dual-rail encoding in [6] except that x is encoded as
(11) in [6]. However, the derived logic formulas for primitive
gates in Esym are identical to those in [6].

B. Miter Construction and SAT Solving

To construct a miter circuit for compatible equivalence
checking under Esym and Exp, we rely on the following
proposition.

Proposition 1. Given two X-valued combinational circuits Ĝ
and R̂ with identical primary inputs I = {pi | i = 1 . . . n}
and corresponding primary outputs ÔG = {ôg,i | i = 1 . . .m}
and ÔR = {ôr,i | i = 1 . . .m}, respectively, Ĝ and R̂ are
compatible equivalent if and only if the Boolean function of
miter

M =

{∨n
i=1(o

0
g,i¬o0r,i ∨ o1g,i¬o1r,i), for Esym∨n

i=1(o
0
g,i¬o0r,i ∨ ¬o0g,io0r,i ∨ o1r,i)¬o1g,i, for Exp

outputs 0 under all assignments in Bn to I , where (o0g,i, o
1
g,i)

and (o0r,i, o
1
r,i) are the Esym/Exp-encoded variables of ôg,i and

ôr,i, respectively.

Thereby we can determine whether two circuits are compat-
ible equivalent by checking the Boolean satisfiability of miter
M , given that the corresponding CNF formula can be obtained
from the miter circuit by Tseitin transformation [14]. Below
we exploit special properties of Esym and Exp to improve SAT
solving efficiency.

From Table III, we observe that the formulas for operators
under Esym are more succinct than those under Exp except
for XOR. Therefore, the CNF formula transformed from an
Esym-encoded circuit can be shorter than that from Exp. More-
over, because all gate functions in Esym are unate, Plaisted-
Greenbaum encoding [15] can be applied to replace Tseitin
transformation to further reduce the CNF formula size.

For a signal (o0, o1) of a circuit encoded under Exp, observe
that when o1 = 1, the value of o0 is a don’t care for the
primary outputs of the circuit because the value of ô = x
is determined by o1 = 1 regardless of the value of o0.
Let o0 be the output of some gate (node) g with function
f(x1, . . . , xk) over the fanin variables x1, . . . , xk of g under
Exp. Let C = {Ci | i = 1, . . . , j} be the clauses converted
from the node with output o0 in the circuit. When o1 = 1,
the clauses C impose no constraint on the function of primary
outputs. Therefore, we can replace every clause Ci ∈ C by

𝑜! 𝑏!
𝑎!

(a) Exp

𝑜!

𝑎"

𝑏!

𝑎!
𝑏"

(b) Ec
xp

𝑜!

𝑎"

𝑏!

𝑎!
𝑏"

(c) Enc
xp

Figure 2: Example of x-bit fanin insertion of AND gate.

clause (Ci ∨ o1), i.e., inserting the x-bit literal o1 into Ci.
Such an x-bit literal insertion technique, referred to as Exi

xp,
may conditionally disable clauses and potentially speed up
SAT solving.

C. X-Valued CEC Flow

The circuit-based CEC algorithm [4] has its advantage over
pure SAT solving due to the additional utilization of circuit
properties. Similarly, we exploit circuit similarities in our
CEC-based compatible equivalence checking, referred to as
xcec, flow.

In theory, we can also do x-bit literal insertion in SAT solv-
ing under xcec flow. However, in practical implementation,
optimizing a circuit M before SAT solving may destroy the
pairwise relationship between the x-bit node and original-bit
node that together encode some node of the ternary-valued
circuit M̂ , making x-bit literal insertion infeasible. Therefore,
we propose another approach x-bit fanin insertion in xcec
flow that also utilizes the information of x-bit in the original-
bit circuit, i.e., the subcircuit consists of purely original-bit
signals in an Exp-encoded circuit, before circuit optimization.
Specifically, let â be a fanin to ô and let Exp(ô) = (o0, o1),
Exp(â) = (a0, a1). Recall that when the x-bit a1 = 1,
the original-bit a0 becomes a don’t care to the primary
output functions of the underlying circuit. There are different
strategies to utilize the flexibility. In particular, we can replace
the fanin a0 of o0 with constant 0, with constant 1, with the
controlling (denoted Ec

xp), or with the non-controlling value
(denoted Enc

xp) of the gate of o0 when a1 = 1. Figure 2
shows an example of o0=AND(a0, b0) with (o0, o1) =Exp(ô),
(a0, a1) =Exp(â), and (b0, b1) =Exp(b̂), where (a) shows the
original implementation of AND, (b) corresponds to the Ec

xp
strategy, and (c) corresponds to the Enc

xp strategy applied on
both fannins a0 and b0. Note that for Ec

xp, when a1 is assigned
to value 1, o0 is implied to be 0. Essentially, Ec

xp allows
more implication propagation on gate variables topologically
from primary inputs to primary outputs. For Enc

xp, when a1 is
assigned to value 1, o0 equals b1 ∨ b0 and is independent of
fanin a0. Essentially, Enc

xp allows conditional blocking of some
fanins.

V. CE PAIR IDENTIFICATION

The above xcec flow does not make full use of the un-
derlying information of the X-valued circuits. In fact, we can
identify compatible equivalent (CE) pairs of signals within
a circuit, in a way similar to identify equivalent signals in
the conventional CEC flow. However, unlike the equivalence
relation in CEC, the CE relation is not symmetric, and thus

Table III: Dual-rail encoding of primitive gate operations.

ô =NOT(â) ô =AND(â, b̂) ô =OR(â, b̂) ô =XOR(â, b̂) ô =DC(ĉ, d̂) ô =MUX(â, b̂, ŝ)

Esym
o0 a1 a0 ∨ b0 a0b0 a0b0 ∨ a1b1 c0d0 a0b0 ∨ a0S0 ∨ b0S1

o1 a0 a1b1 a1 ∨ b1 a0b1 ∨ a1b0 c1d0 a1b1 ∨ a1S0 ∨ b1S1

Exp
o0 ¬a0 a0b0 a0 ∨ b0 a0¬b0 ∨ ¬a0b0 c0¬d0 a0¬S0 ∨ b0S0

o1 a1 a1b1 ∨ a1b0 ∨ a0b1 a1b1 ∨ a1¬b0 ∨ ¬a0b1 a1 ∨ b1 c1 ∨ d0 ∨ d1 (a1¬S0 ∨ b1S0 ∨ S1)(¬a0b0 ∨ a0¬b0 ∨ a1 ∨ b1)

(a) High-level x-circuit. (b) Low-level AIG.

Figure 3: Circuit representation of an AND gate.

does not form an equivalence relation. Consequently, a CE pair
(â, b̂) cannot be merged, as performed in conventional CEC,
unless the pair (b̂, â) is also compatible equivalent. Although
not all CE pairs can be merged, their presence can be expressed
and imposed as additional learned clauses to strengthen SAT
solving of the miter output. Instead of working on the AIG
representation, which loses the high-level information of the
original X-valued circuits, we modify the circuit representation
to exploit the internal CE relations.

A. Circuit Representation

We maintain two levels of circuit representation: the high-
level X-valued circuit and the low-level AIG. The high-
level representation corresponds to the original ternary-valued
circuit, which consists of the primitive gates AND, OR, NAND,
NOR, XOR, XNOR, NOT, BUF, special gates DC, MUX, and
constants 0, 1, x.

In fact, all the above gates and constants can be re-expressed
in terms of only gates AND, NOT and constants 1, x. For
example, the special gates MUX(ŝ, î, ĵ) and DC(ĉ, d̂) can be
re-expressed as follows.

MUX(ŝ, â, b̂) = ¬(¬(¬ŝ ∧ â) ∧ ¬(ŝ ∧ b̂) ∧ ¬(â ∧ b̂)) (1)

DC(ĉ, d̂) = MUX(d̂, ĉ, x) = ¬(¬(¬d̂∧ ĉ)∧¬(d̂∧x)∧¬(ĉ∧x))
(2)

Therefore, we can re-express the high-level X-valued circuit
in terms of AND, NOT, 1, and x. After the re-expression,
the X-valued circuit can be further encoded with Exp (or
Esym) into an AIG, which we refer to as the low-level circuit
representation. Figure 3 illustrates the high and low-level
circuit representations of an AND gate.

Note that each signal in the high-level X-valued circuit
can be associated with exactly two signals (nodes) in its
low-level AIG. However, a low-level AIG node may not be
associated with any high-level signals. Although there are

various techniques to reduce AIG size, e.g., rewriting [5], the
only optimization we can perform on the low-level AIG is
equivalent node merging. Each AIG node is replaced by the
representative node in its equivalence class after equivalent
node merging, such replacement can be easily updated on
the high-level circuit. However, after rewriting the circuit, we
may fail to find two associating AIG nodes for each X-valued
signal.

B. Proving and Learning Internal CE Information

After the two representation levels of the miter circuit has
been constructed, we then proceed to identify the CE pairs
in the high-level X-valued circuit, with the low-level AIG
being used for CNF formula translation for SAT solving. In
contrast to the standard CEC procedure, we cannot simply
merge signals â and b̂ in the circuit even if â is compatible
equivalent to b̂. Therefore, we propose an alternative way to
store the CE relations of internal signals. From the definition of
compatible equivalence, we can derive the representing CNF
formula of an X-valued signal â being compatible equivalent
to another signal b̂ as

(a1 ∨ ¬b1) ∧ (a1 ∨ a0 ∨ ¬b0) ∧ (a1 ∨ ¬a0 ∨ b0), (3)

where Exp(â) = (a0, a1) and Exp(b̂) = (b0, b1). This formula
valuates to true if â is compatible equivalent to b̂. By adding
these three CE-clauses to the CNF formula converted from the
miter circuit as the additional constraints, the satisfiability of
the miter remains unchanged. That is, these three CE-clauses
can be viewed as the learned information that may potentially
guide the SAT oracle for more efficient solving.

To assist CE pair identification, the following proposition
allows us to use transitivity for more efficient reasoning.

Proposition 2. For a pair of X-valued signals ô1 and ô2 with
ô1 = AND(â1, b̂1) and ô2 = AND(â2, b̂2), if â1 is compatible
equivalent to â2 and b̂1 is compatible equivalent to b̂2, then
ô1 is compatible equivalent to ô2.

The proof of Proposition 2 can be done by enumerating
all combinations of â0, b̂0, â1 and b̂1, and is omitted due to
space limitations. Proposition 2 can be helpful when we are
identifying the CE pairs in the high-level X-valued circuit. To
determine the compatible equivalence of the outputs of two
AND gates, we can first check whether their corresponding
fanins are in CE relation, if so, we can conclude their equiv-
alence and the costly SAT-proving effort can be saved.

The procedure of proving and learning internal CE pair
information is briefly sketched as follows. When the CE
relation of (â, b̂) is to be checked, we first check whether
the fanins of â and b̂ fulfill the condition of Proposition 2.

If so, we can conclude that their compatible equivalence and
return. Otherwise, for â being compatible equivalent to b̂, the
condition imposed by the three clauses in Formula 3 have
to be satisfied under all circumstances, that is, the negated
condition of each of the three clauses should not be satisfied.
By incremental SAT solving, we can determine the compatible
equivalence of (â, b̂) by checking the satisfiability of the CNF
formula derived from the miter of the two sub-circuits with
â and b̂ as their respective primary outputs imposed with the
negation of each of the three clauses. If a satisfying assignment
can be found by the SAT oracle, then the Formula (3) is
evaluated to false under such assignment, meaning that the
two signals are not compatible equivalent. Otherwise, a CE
pair is found and the three clauses in Formula (3) are treated
as the additional learned CE-clauses and added to the CNF
formula translated from the miter.

C. Overall CE Checking Flow

With internal CE pairs identified, the corresponding learned
clauses can be incorporated into the miter CNF formula
to strengthen final SAT solving. The overall CE checking
procedure is sketched in Algorithm 1. In line 1, the set of
clauses C is initialized as empty. Random pattern simulation
is performed in line 2. The patterns serve as signatures of
signals showing their (in)equivalences, the same as in SAT
sweeping. In line 3-4, the procedure FindCexInSim checks if
any counterexample can be found at the primary output end by
simulation. If so, we can return NEQ at an early stage. The loop
starting in line 5 iterates through each primary output pair (ôg ,
ôr) and acquires the learned CE-clauses. In line 6, procedure
GetCone collects the signals in the transitive fanin cone of
the input signal. The inner loop in line 7 iterates each pair of
signals in the extracted cones that are potentially compatible
equivalent by the simulation patterns. In line 8, procedure
CheckPairCE returns the status of compatible equivalence
checking on the two given signals and the corresponding set
of learned CE-clauses L, which is then added to the clause
set C in line 9. If ŝg and ŝr are not compatible equivalent,
a witness cex is also returned by CheckPairCE. Then in
lines 10-11 the corresponding witness cex is added to the
set of simulation patterns and the circuits Ĝ and R̂ are re-
simulated. In lines 12-13, procedure FindCexInSim is called
again to check the patterns at the primary output end. Lastly,
in lines 14-15, we incorporate the CNF formula of the miter
of Ĝ and R̂ with the clauses acquired by internal CE proving
into clause set C, and invoke a SAT call to determine the
satisfiability of C. If C is unsatisfiable, then circuits Ĝ and
R̂ are compatible equivalent. Otherwise, they are inequivalent.
Note that in line 7 the signals are traversed in a topological
order from inputs to outputs, and the SAT solving of internal
CE identification is done incrementally. As in the standard
SAT sweeping procedure, the solver can accumulate circuit
information in each round of incremental solving, and may
gradually become more effective in decision making.

Algorithm 1 CEProve

Input: two x-valued topological-ordered circuits Ĝ and R̂
Output: compatible equivalence of Ĝ and R̂

1: C ← ∅;
2: RandomSim(Ĝ, R̂);
3: if FindCexInSim(Ĝ, R̂) then
4: return NEQ;
5: foreach (ôg , ôr) in GetPoPair(Ĝ, R̂) do
6: N̂g, N̂r ← GetCone(ôg), GetCone(ôr);
7: foreach (ŝg , ŝr) in GetCECandidatePair(N̂g , N̂r) do
8: stat, L← CheckPairCE(ŝg , ŝr);
9: C ← C ∪ L;

10: if stat = NEQ[cex] then
11: add cex to simulation patterns;
12: if FindCexInSim(Ĝ, R̂) then
13: return NEQ;
14: C ← C ∪ ToCNF(BuildMiter(Ĝ, R̂));
15: return IsSAT(C) ? NEQ : EQ;

VI. EXPERIMENTAL RESULTS

The proposed methods were implemented in C++ within
the ABC system [16]. All the experiments were conducted
on a Linux server with Intel Xeon CPU E5-2620 v4 of 2.10
GHz and 126 GB RAM. A timeout limit of 1800 seconds is
imposed on each run of the experiment. The statistics of the
28 industrial benchmarks2 of the 2020 ICCAD CAD Contest
are shown in Table IV, where Column 2 lists the application
source of the X-value of each benchmark including index-
out-of-range (denoted IoR), casex (XC), X-bit (XB), power
model (PM), and don’t care space (DCS); Columns 3-7 list
the numbers of primary inputs(PIs), primary outputs(POs),
and logic gates of the golden and revised RTL circuits,
respectively; Column 8 lists the answer to the compatible
equivalence checking of the golden and revised circuits for
each benchmark.

In the following tables and figures, we compared various
methods, include dcec (the best performing CEC engine
of ABC on the benchmarks), dsat (direct SAT solving of
miter circuit)3, xcec (the xcec flow in Section IV), and
cepr (the procedure of Algorithm 1 with preprocessing using
SAT sweeping). Each of the methods is further annotated
by the applied encoding techniques. For a fair comparison,
kissat [17], the champion in the main track of the 2020
SAT competition, was used as the SAT oracle in the final
miter solving stage of all the methods.4 On the other hand,
since kissat does not support incremental solving, we
adopted glucose [18] as the incremental SAT solver in our
clause learning procedure in cepr. The studied methods were
also compared with the commercial tool Cadence Conformal

2 We excluded case25 and case30 from the table as they do not contain
any X-value and can be solved by conventional CEC. 3 In dsat, the
dual-rail encoded circuit was directly converted to a CNF formula by Tseitin
transformation [14], without further simplification. 4 kissat is configured
to target unsatisfiable instances for better performance in the number of solved
cases among contest benchmarks.

Table IV: Benchmark statistics.

X-source #PIs #POs #Gates CEGolden Revised Total
case1 IoR 48 20 646 1019 1665 EQ
case2 IoR 48 20 646 1024 1670 NEQ
case3 XC 64 32 4407 7150 11557 EQ
case4 XC 64 32 4407 7442 11849 NEQ
case5 PM 160 32 3817 7376 11193 EQ
case6 PM 160 32 3817 7376 11193 EQ
case7 PM 96 59 7188 7157 14345 NEQ
case8 DCS 8214 93 38945 87216 126161 EQ
case9 XB 96 58 14931 14931 29862 NEQ

case10 IoR 256 119 44595 43231 87826 EQ
case11 IoR 256 85 43817 42282 86099 NEQ
case12 IoR 614 54 15170 20075 35245 EQ
case13 IoR 614 68 15320 15058 30378 EQ
case14 PM 128 1 21813 21806 43619 NEQ
case15 XB 193 120 44546 46487 91033 EQ
case16 XC, IoR 1903 1382 47443 38951 86394 EQ
case17 XB 128 115 22488 76352 98840 EQ
case18 IoR, PM 217 2 459 655 1114 EQ
case20 XC 64 27 4419 7752 12171 EQ
case21 DCS 8214 93 38944 57008 95952 EQ
case22 IoR 256 119 66268 46528 112796 EQ
case23 IoR 256 85 65155 45234 110389 NEQ
case24 XB 128 115 43018 39249 82267 EQ
case26 IoR 614 54 14520 15163 29683 EQ
case27 IoR 614 54 14424 21449 35873 EQ
case28 PM 48 20 1208 1363 2571 EQ
case29 XB 786 27 2991 10158 13149 EQ
case31 IoR 48 12 1157 1312 2469 EQ

Smart Logic Equivalence Checker (LEC), version 20.10-p100.
Furthermore, we compared our methods with those of the other
top contestants, the 2nd and 3rd place winners of the 2020
ICCAD CAD Contest (under the same machine execution and
using the same SAT engine kissat as ours). We note that
ABC provides a recent command “xec” in response to the
contest. However, its performance is inferior to other contest
winners in terms of both runtime and the number of solved
cases, and thus it is excluded from the comparison.

The overall results are summarized in Table V, where
Column 1 lists the method, Columns 2-4 list the number of
solved cases, and Column 5 lists the total computation time
(in seconds) of the solved cases. The methods in this table are
sorted by the number of solved cases, with ties being broken
by total runtime. From the table, we can see that our methods
xcec-Ec

xp and xcec-Enc
xp solved the most cases (20 out of 28),

with xcec-Enc
xp having a slight edge on the total computation

time. (We note that the 3rd place winner of the CAD Contest
solved more cases than the 2nd place winner due to the fact
that the evaluation of the contest was conducted with respect to
a selected subset of the benchmarks.) In addition, the quantile
plot of eight selected methods is shown in Figure 4, where
a data point (x, y) indicates that are x cases solvable by the
respective approach within y seconds. Evidently all our and the
2nd and 3rd place contestants’ methods were more effective
than the baseline method dcec and the commercial tool LEC.

Table VI shows a more detailed runtime information of each
case, where Columns 5-6 list the best achieved runtime and the
corresponding approach on each benchmark, and Columns 2-4
list the ratio of the runtime of the top 3 contest approaches
to the best runtime. An entry “-” in the table indicates that
the case cannot be solved within the timeout limit and the

Table V: Performance comparison in the number of solved
cases and total runtime.

method # solved cases total time
EQ NEQ total

xcec-Enc
xp 13 7 20 5625.25

xcec-Ec
xp 13 7 20 6305.45

dsat-Exi
xp 12 7 19 4691.05

dsat-Enc
xp 12 7 19 5279.84

cepr-Exp 12 7 19 6645.13
xcec-Exp 11 7 18 2600.02
3rd place 11 7 18 2727.24

xcec-Esym 11 7 18 4021.63
dsat-Ec

xp 10 7 17 2671.09
dsat-Exp 11 6 17 3380.51
2nd place 9 7 16 1568.63
dsat-Esym 9 6 15 2157.75
dcec-Exp 8 7 15 4910.72

LEC 6 5 11 2344.78

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
of solved cases

0

200

400

600

800

1000

1200

1400

1600

1800

tim
e

(s
)

dcec-Exp

LEC
2nd place
3rd place
cepr-Exp

dsat-Exi
xp

xcec-Ec
xp

xcec-Enc
xp

Figure 4: Performance comparison in the number of solved
cases w.r.t. time bound.

unsolvable cases by all methods are excluded. As can be seen,
the studied methods/configurations have their own strengths in
solving different benchmarks.

A. Evaluation on Encoding Schemes and Synthesis Effects

The xcec flow was modified from dcec flow in ABC with
the following changes: 1) kissat was used for the final SAT
solving, 2) SAT sweeping was turned off, and 3) the number of
rewrite, refactor, and balance in initial optimization
stage were fine-tuned.

Table V shows that under xcec (resp. dsat) flow, Exp
encoding solved 18 (resp. 17) cases while Esym solved 18
(resp. 15). Figure 5 further details the runtime comparison in
a logarithmic scale between Exp and Esym of individual cases
(if solvable by any of the two encodings). In the plot, the
runtime of a timeout case is counted as 1800 seconds. As can
be seen, the equivalent (EQ) cases in general took more time
to solve than the non-equivalent (NEQ) cases. By considering
the data points (txp, tsym) for 10 ≤ txp, tsym < 1800 in
Figure 5 to exclude relatively easy instances, it is evident
that Exp is superior to Esym. Specifically, the average of
(tsym − txp)/tsym × 100% of all these points of xcec (resp.
dsat) is 25.35% (resp. 25.92%). The results reveal that the
superiority Exp to Esym for both xcec and dsat flows holds
regardless of the effect of synthesis tools.

The advantage of Exp over Esym, especially for EQ cases,
can be explained through the analysis of Table VII, where

Table VI: Runtime comparison of top solving methods.
1st (ratio)
(xcec-Encxp)

2nd (ratio) 3rd (ratio) Our Best
time (s) method

case1 1.19 1.27 1.36 177.44 xcec-Ec
xp

case2 4.97 5.05 4.17 0.33 xcec-Esym
case4 4.68 3.66 0.61 0.98 xcec-Esym
case5 1.51 2.89 1.72 18.49 xcec-Ec

xp
case6 1.52 2.98 1.72 18.48 xcec-Ec

xp
case7 15.73 15.74 4.93 0.23 dsat-Esym
case8 1.13 - - 1371.15 cepr-Exp

case9 1.29 15.35 2.30 0.51 dsat-Exi
xp

case11 1.66 6.70 1.31 5.19 dsat-Exi
xp

case12 2.03 - 2.12 453.92 cepr-Exp
1

case13 1.30 5.26 2.02 56.24 xcec-Exp
case14 1.01 8.07 0.93 1.81 xcec-Exp
case16 1.00 3.02 3.39 14.18 xcec-Enc

xp
case18 1.20 5.59 1.06 0.07 xcec-Esym
case21 2.97 - - 602.00 cepr-Exp
case23 1.00 2.41 0.72 9.21 xcec-Enc

xp
case26 1.27 6.13 3.07 51.47 dsat-Exp

case27 1.13 - 1.57 433.59 cepr-Exp
2

case28 1.00 1.20 1.12 192.39 xcec-Enc
xp

case31 1.23 1.38 1.19 190.62 xcec-Exp
1 w/o sweep + incremental solver minisat [19] 2 w/o sweep

0.1 1.0 10.0 100.0 1000.0
runtime of Exp (s)

0.1

1.0

10.0

100.0

1000.0

ru
nt

im
e

of
 E

sy
m

 (s
)

NEQ
EQ
xcec
dsat

Figure 5: Runtime comparison of encoding schemes Esym and
Exp under the dsat and xcec flows.

the ternary values and their binary coded values of two
corresponding primary output signals (ôg, ôr) between circuits
Ĝ and R̂ are shown. The symbol “–” denotes a don’t-care.
From the table, we see that if o1g = 1 under a primary input
assignment, then Exp allows direct conclusion of EQ under
the assignment. In contrast, Esym cannot conclude EQ from
a single bit observation. While Esym can be more succinct
resulting in smaller CNF formulas, Exp exhibits stronger
implication capability and is advantageous over Esym in the
EQ cases.

When the techniques of x-bit literal insertion and x-bit fanin
insertion as mentioned in Sections IV-B and IV-C are applied,
the performance of compatible equivalence checking can be
further enhanced. In dsat flow, with x-bit literal insertion,
dsat-Exi

xp solved four more cases compared to dsat-Esym,
and two more cases compared to dsat-Exp as observed in
Table V. As discussed previously, dsat-Exi

xp may conditionally
disable some clauses under different assignments during SAT

Table VII: Valuations of Esym and Exp under EQ and NEQ
conditions.

Ternary Logic Exp Esym
(ôg, ôr) (o0go

1
g, o

0
ro

1
r) (o0go

1
g, o

0
ro

1
r)

EQ
(x,0), (x,1), (x,x) (–1,– –) (00,– –)

(0,0) (00,00) (10,10)
(1,1) (10,10) (01,01)

NEQ

(1,0) (10,00) (01,–0)(1,x) (–0,–1)(0,x) (10,0–)(0,1) (00,10)

solving. The speedup from dsat-Exp to dsat-Exi
xp indicates that

conditionally disabling clauses indeed improves SAT solving.
A similar effect of performance improvement can be ob-

served between Exp with or without x-bit fanin insertion, given
that dsat-Enc

xp solved two more cases than dsat-Exp and in
xcec flow, with x-bit fanin insertion, xcec-Ec

xp and xcec-
Enc

xp dominate the number of solved cases as they solve the
most number of cases among all of our methods. To further
compare the effect between Ec

xp and Enc
xp under both xcec and

dsat flows, Enc
xp either solved more cases or took less runtime

than Ec
xp as seen from Table V. As discussed in Section IV-C,

Ec
xp allows more implication propagation on gate variables

topologically from primary inputs to primary outputs, while
Enc

xp conditionally disables some fanins. The results might
suggest that conditionally disabling fanins could lead to more
significant speedup than propagating implications.

We note that the validities of x-bit literal insertion and x-bit
fanin insertion rely on the special characteristics of Exp, that
is, the original bit o0 of a signal (o0, o1) becomes don’t care,
i.e., not affecting the miter output, when o1 = 1. Essentially,
x-preserving encoding Exp allows these specialized techniques
for performance enhancement. These results show that our
x-preserving encoding Exp is more suitable to compatible
equivalence checking in the contest benchmarks compared to
other dual-rail encoding proposed in [6].

Our observation that SAT sweeping was not helpful in
compatible equivalence checking may seem counter-intuitive.
Table VIII shows the two cases that was originally solvable by
xcec but unsolvable if SAT sweeping is performed prior to
xcec (denoted as swp-xcec), where the “#node” columns list
the circuit size before final SAT solving, and the “final SAT”
and “sweep” column list the runtime (in seconds) spent on
them. To make sure this phenomenon is caused by sweeping,
we let kissat solve the reduced circuits for another 1800
seconds. As shown in the table, although SAT sweeping
effectively reduces circuit sizes, the resulting circuits become
harder to prove and cannot be solved in timelimit. We therefore
excluded SAT sweeping in our xcec flow. The fact that smaller
circuit and CNF formula sizes may not be always helpful is
consistent with our observation of Exp being more efficient
than Esym. Both Esym and SAT sweeping may reduce the
formula size for SAT solving, but not the runtime.

B. Evaluation on CE Relation Identification

From our experimental evaluation, of all the different tested
configurations of cepr, the one with SAT sweeping opti-

Table VIII: Results of xcec with and without SAT sweeping.

xcec-Enc
xp swp-xcec-Enc

xp
#node Final SAT #node Final SAT Sweep

case8 171410 1549.82 114936 >1800 940.94
case12 59451 922.25 30097 >1800 156.05

1 8 9 12 13 14 16 21 23 26 27 28 31
case

0

200

400

600

800

1000

1200

1400

1600

1800

tim
e

(s
)

cepr
dsat
xcec
pre
sat
tmo

Figure 6: Runtime comparison of methods cepr, dsat and
xcec.

mization and glucose as the incremental solver performed
the best. Different from the previous observation in xcec,
SAT sweeping helps in cepr due to its circuit simplification
capability and thus reducing the effort of internal CE pair
identification. On average, the number of CE-clauses acquired
via Proposition 2 accounted for 9.56% of the total learned
CE-clauses over the cases solved by cepr . When compared
to other approaches under Exp, method cepr was able to
solve 19 cases over the 18, 17 and 15 cases solved by xcec,
dsat and dcec, respectively. Figure 6 shows the runtime
comparison of methods cepr dsat, and xcec under Exp, each
marked with a distinct screentone. A runtime is divided into
two portions colored in orange and blue, which corresponds
to CNF preparation time (pre) (including the time spent on
circuit optimization, internal CE relation identification, and
CNF translation from AIG), and miter satisfiability solving
time (sat), respectively. Additionally, timeout (tmo) cases
are marked in light gray. For simplicity, easily-solved cases,
those solved within 50 seconds by all the three methods, are
excluded from the chart. We note that case 8 was only solvable
by cepr, where the majority of runtime was spent on inter-
nal CE relation identification (pre) while miter satisfiability
solving (sat) only took a small fraction, indicating that the
strengthened CNF formula with additional learned clauses can
be solved more easily. In fact, case 8 is one of the hardest
solvable cases in our experiments and cepr-Expwas the best
among the three successful methods cepr-Exp, xcec-Ec

xp, and
xcec-Enc

xp. However, there were also cases, such as case 12,
that even with an abundant learned information, the solving
took longer than the other two methods. When evaluated by the
number of solved cases, cepr is clearly the best among the four
methods in Table V under Exp, namely, xcec-Exp, dsat-Exp,
cepr-Exp, and dcec-Exp. However, not all cases experienced
speedup with such approach and a large number of learned
clauses did not always imply the improved efficiency of the
final miter solving.

In summary, our proposed encoding schemes and flows
outperformed other methods in the CAD Contest. Additionally,
Exp is preferred over Esym in compatible equivalence checking.
Exploiting the don’t care property and internal CE relation of
Exp can further improve the verification ability. Especially,
xcec-Ec

xp and xcec-Enc
xp solved the most cases and cepr-Exp

significantly reduced the runtime on two hard EQ cases.

VII. CONCLUSIONS

We have presented our method to compatible equivalence
checking based on the X-value preserving dual-rail encoding
and internal CE relation identification. Experiments on indus-
trial designs have demonstrated the superiority of our method
to other competitive methods in the ICCAD CAD Contest and
the effectiveness of the proposed techniques. For future work,
motivated by [20], we would like to devise new SAT solving
strategies exploiting circuit don’t cares.

REFERENCES

[1] C. L. Berman and L. H. Trevillyan, “Functional comparison of logic
designs for VLSI circuits,” in Proc. ICCAD, pp. 456–459, 1989.

[2] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proc. DAC, p. 263–268, 1997.

[3] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE TCAD, vol. 21, no. 12, pp. 1377–1394, 2002.

[4] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements
to combinational equivalence checking,” in Proc. ICCAD, p. 836–843,
2006.

[5] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in Proc. DAC,
pp. 532–535, 2006.

[6] M.-J. Nam, C.-H. Sung, and J. Choi, “Sat-based combinational equiva-
lence checking with don’t care,” 2004.

[7] T. Melham, “Symbolic trajectory evaluation,” in Handbook of Model
Checking, pp. 831–870, 2018.

[8] H.-Z. Chou, H. Yu, K.-H. Chang, D. Dobbyn, and S.-Y. Kuo, “Finding
reset nondeterminism in RTL designs-scalable x-analysis methodology
and case study,” in Proc. DATE, pp. 1494–1499, 2010.

[9] R. Drechsler, S. Eggersglüß, G. Fey, and D. Tille, Test pattern generation
using Boolean proof engines. Springer, 2009.

[10] K. Yuan, C. Kuo, J. R. Jiang, and M. Li, “Encoding multi-valued
functions for symmetry,” in Proc. ICCAD, pp. 771–778, 2013.

[11] “IEEE standard for Verilog hardware description language,” IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001), pp. 1–590, 2006.

[12] D. Brand, “Verification of large synthesized designs,” in Proc. ICCAD,
p. 534–537, 1993.

[13] C.-J. Hsu, C.-A. Wu, C.-Y. Huang, and C.-H. Chou, Problem A: X-value
Equivalence Checking, 2020. http:/iccad-contest.org/2020/.

[14] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of reasoning, pp. 466–483, 1983.

[15] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause form
translation,” J. Symb. Comput., vol. 2, no. 3, pp. 293–304, 1986.

[16] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. CAV, pp. 24–40, 2010.

[17] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. SAT Competition 2020 – Solver and Benchmark De-
scriptions, vol. B-2020-1, pp. 51–53, 2020.

[18] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proc. IJCAI, p. 399–404, 2009.

[19] N. Sörensson and N. Eén, “Minisat v1.13 - a sat solver with conflict-
clause minimization,” in Proc. SAT Competition 2005 – Solver Descrip-
tions, 2005.

[20] Z. Fu, Y. Yu, and S. Malik, “Considering circuit observability don’t
cares in CNF satisfiability,” in Proc. DATE, pp. 1108–1113, 2005.

