
SC-DNN
Deep Neural Network using 

Stochastic Computing
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Deep Learning

• High computation effort
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Mat-Vec Multiply
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Stochastic Computation

• Unipolar
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Multiplier → a single AND gate!!



Bit-stream Correlation

• Non-ideal characteristic
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Pros and Cons
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• Smaller LE usage

• Low power consumption

• Higher error (bit-flip) 
tolerance

• Longer latency

• Not accurate

• Need conversion



SC-Multiplier

• DAC 2017
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Reference:
Sim, Hyeonuk, and Jongeun Lee. "A New Stochastic Computing Multiplier with Application to Deep Convolutional 
Neural Networks." Proceedings of the 54th Annual Design Automation Conference 2017. ACM, 2017.



Serial MUX

A deterministic way to generate bit stream:
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𝑥𝑁−𝑖 first appears at cycle 2𝑖−1, and thereafter in every 2𝑖 cycles,
yields a theoretical maximum error: 𝑁/2𝑁+1 for 𝑤𝑥



SC-Multiplier
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Soft/Hard-ware partition
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Data Buffer



Workflow
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Error Surface
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Convectional SC (1024-bit stream) DAC 2017 SC (128-bit stream)

Reference:
Kim, Kyounghoon, et al. "Dynamic energy-accuracy trade-off using stochastic computing in deep neural 
networks." Proceedings of the 53rd Annual Design Automation Conference. ACM, 2016.



Experiment

• mnist DNN model (tensorflow):

784 → 50 → 50 → 50 → 10

• 8-bit fixed point precision, range -1~1
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• Overall testing accuracy: 94.41%

13



Results
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a significant 3% accuracy drop!!
→ longer bit stream might be able to fix it

Platform Accuracy

FPGA 9,107/10,000 (91.07%)

software 9,441/10,000 (94.41%)



Timing Analysis

Theoretical (simplified, other cpu operation not included)

• Transmission (32-bit AXI bridge, 50MHz)

HPS to FPGA: 784 + 50 + 50 + 50 × 13 = 12142 (c. c. )

FPGS to HPS: 784 + 50 + 50 + 50 × 50 + 51 = 94334 (c. c. )

→ 106476 𝑐. 𝑐. = 2.13𝑚𝑠

• Calculation
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SC-Multiplier

• DAC 2017
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Reference:
Sim, Hyeonuk, and Jongeun Lee. "A New Stochastic Computing Multiplier with Application to Deep Convolutional 
Neural Networks." Proceedings of the 54th Annual Design Automation Conference 2017. ACM, 2017.

Recall:



Timing Analysis

Theoretical (simplified, other cpu operation not included)

• Transmission (32-bit AXI bridge, 50MHz)

HPS to FPGA: 784 + 50 + 50 + 50 × 13 = 12142 (c. c. )

FPGS to HPS: 784 + 50 + 50 + 50 × 50 + 51 = 94334 (c. c. )

→ 106476 𝑐. 𝑐. = 2.13𝑚𝑠

• Calculation
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784 × 16.85 + 50
× 86.56 + 63.40 + 88.49
= 25132.9 c. c. = 0.50𝑚𝑠

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 2.63𝑚𝑠



Timing Analysis

Experimental value
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Operation load
Layer1 Layer2 Layer3 Layer4

other total
write read write read write read write read

Time (ms) 0.34 12.0 0.056 0.84 0.052 0.81 0.051 0.84 0.051 0.21 15.22

(%) 2.23 78.8 0.37 5.52 0.34 5.32 0.34 5.52 0.34 1.38 100

Performance bottleneck Possible solutions:
• Wider AXI bridge
• Better data reuse (Conv.)



Demo
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Future plan

• Convolution layer
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Convolution
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Convolution

• Data reuse scheme
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Reference:
Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," 
International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016.



Future plan

• Convolution layer

• Memory hierarchy
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Memory hierarchy

FPGA
HPS

(ARM CPU)

size memory Eyeriss analogy

~Mb embedded memory global buffer

~kb
Distributed ram

(composed by LEs)
RF

On-chip SRAM
(L1, L2 cache)

Off-chip SDRAM

AXI

DMA
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Future plan

• Convolution layer

• Memory hierarchy

• Integrate embedded multiplier and DSP

• OpenCL HLS
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Conclusion

1. SC-based Mat-Vec multiplier

2. Performance:
• 3% accuracy drop

• Latency on par with CPU

3. We are new to the field of SoC/FPGA design.
There many more possibilities that we’re willing
to try.
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The End
Thanks for listening.
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