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Introduction




Multi-FPGA System

* Multi-FPGA boards are commonly used for system emulation [1] and
prototyping.
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[1] Myaing et al., 2011.



FPGA 1/0O bottleneck

& Xilinx -+ Altera

20000
18000
16000

14000
12000 (1120 /Os)

Stratix4
10000

8000 (1120 1/Os)
6000 (960 1/0s) Stratix3
4000 Virtex-4

2000 -
o Stratix2(1170 1/Os) Virtex-5(1200 VOs)

2004 2005 2006 2007 2008

Year

Capacity (Gate) per VO

(1200 /Os)
Virtex-7

Stratix5

Virtex-6

(1200 V/Os)

2009 2010

ratio of FPGA logic capacity over 1/Os (retrieved from [2])

— |/Os become scarce resources

[2] Hung et al., 2018.




Time Division Multiplexing (TDM)

* The system requires 2 separate clocks.
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[3] Babb et al., 1993.



Motivation

* Instead of increasing the effective 1/0, we try to decrease the
required input pin by folding the circuit.
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Problem Formulation

* Given a combinational circuit C, with n inputs and m outputs, and a

folding number T, we are asked to fold C, into a sequential circuit Cg,
which

* has n/T inputs and 2 m outputs, and

* after expanding for T time-frames, becomes functionally
equivalent to C. under proper association of their inputs and
outputs.
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Structural Method
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Structural Method

[0 3-adder example (T = 3)
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Functional Method

 Computation flow
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Functional Method

* Pin scheduling heuristic:

Convert the given combinational circuit into virtual iterative form.
e Output pin scheduling
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cheduling construction encoding

* Output pin scheduling:
1. sort the outputs according to their support sizes in an ascending order.

Output So S1 So Cout

support ag, by |ag, by, aq, by lag, by, a4, by, a,, by g, by, aq, by, a,, b,
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cheduling construction encoding
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* Output pin scheduling:
2. determine the iteration of each output to be scheduled at.

#input of the folded circuit = 2

output So S1 S5 Cout

Support aO) bO aO) bo, all bl ao, bO) al) bll a21 b2 ao, bO; al) bll a21 bZ

|support]| 2/2 4/ 6/ 2 6/2
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* Output pin scheduling:
3. null outputs insertion.

iteration 1 2 3
scheduled Sa, null S+, null S5, C
outputs 0’ b 22 ~out
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* Input pin scheduling:
» schedule the inputs according to the outputs.

iteration 1 2 3
scheduled I 1
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scheduled
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cheduling construction encoding

 After pin scheduling, the 3-adder becomes virtual iterative.
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* FSM construction via time-frame folding [4]:
 State identification via functional decomposition
* Transition construction
S So null s1 null Sy Cout
* FSM minimization | | | | |

ap by a; by a, b, 6

iterative form
[4] Chien et al., 2019. (time-frame expa nded form)
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cheduling construction encoding
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e State identification

time-
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cheduling construction encoding

 Transition construction
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frame

00/0-, 01/1-, 10/1-

11/0-



Functional Methoa T Liomn) 3 e

cheduling construction encoding

N

* FSM minimization
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[5] Abel et al., 2015.
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* State encoding
Encode each state in the state set S with actual bits, 2 schemes are
applied:
 Natural Encoding with [log(]|S]|)]bits
* One-hot encoding with |S| bits, each of which represents a state in S
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Experiments




Experimental Setup

* Implemented in C++ within ABC [6] and used CUDD [7] as the BDD package.
* Environment: Intel(R) Core(TM) i7-8700 3.20GHz CPU and 32GB RAM.

* Benchmark circuits: ISCAS, ITC, MCNC(LGSynth), LEKO/LEKU, Adder, and
EPFL.

e Structural method:

* Imposed the input pin count limitation to 200.
* 11 benchmark circuits with #P1 > 200.

 Functional method

* 11 benchmark circuits, each folded by 4, 8 and 16 time-frames.
* 300s timeout limit on FSM construction and minimization, individually. < ]

[6] Brayton et al., 2010. [7] Somenzi et al., 2005.



Structural Method - Results

* Impose the input pin count limitation to 200.
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Functional Method - Results

e 29 out of 33 cases done within time limit.
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The functional method achieved
44.93% #LUT reduction and

64.93% #FF reduction
over the structural method
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Runtime Comparison

* 4 out of 33 cases exceeded time limit when folded by the functional
method, while all cases done within 1s by the structural method.

5 circuits folded by 4 time-frames
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Conclusions & Future Work




Conclusions & Future Work

* We have formulated a circuit folding approach to time multiplexing
on FPGAs. The structural and functional methods have been
proposed and implemented to demonstrate their potentials to
alleviate the 1/0O-pin bottleneck of FPGAs.

* Experiments suggested that

Structural Method Functional Method
* fast and efficient * high computational cost
* higher circuit complexity * less FF and LUT usage
* Future work: combines the 2 methods to achieve both 6

scalability and optimality.



Questions

Feel free to ask any questions.




