Time Multiplexing
via Circuit Folding

Po-Chun Chient, Jie-Hong Roland Jiang'*
AL Lab

tDepartment of Electrical Engineering
fGraduate Institute of Electronics Engineering
National Taiwan University

Speaker Bio

* Po-Chun Chien is a 2"d-year master’s student.
* | am planning to apply for PhD (fall 2021).
e Contact: r07943091 @ntu.edu.tw

 Affiliation:
 ALCom Lab (led by Jie-Hong Roland Jiang)
* GIEE, NTU

* Research Interests:
* Logic synthesis
e System verification
* Machine learning

mailto:r07943091@ntu.edu.tw

Outline

* Introduction

* Algorithm
 Structural folding method
* Functional folding method

* Experiments
e Conclusions & future work

Introduction

Multi-FPGA System

* Multi-FPGA boards are commonly used for system emulation [1] and
prototyping.

[mmm—m— - —————--—- system §¢----------------- 1
specification

RTL software
development development

multi-FPGA
prototyping
system

interconnection

[1] Myaing et al., 2011.

FPGA 1/0O bottleneck

& Xilinx -+ Altera

20000
18000
16000

14000
12000 (1120 /Os)

Stratix4
10000

8000 (1120 1/Os)
6000 (960 1/0s) Stratix3
4000 Virtex-4

2000 -
o Stratix2(1170 1/Os) Virtex-5(1200 VOs)

2004 2005 2006 2007 2008

Year

Capacity (Gate) per VO

(1200 /Os)
Virtex-7

Stratix5

Virtex-6

(1200 V/Os)

2009 2010

ratio of FPGA logic capacity over 1/Os (retrieved from [2])

— |/Os become scarce resources

[2] Hung et al., 2018.

Time Division Multiplexing (TDM)

* The system requires 2 separate clocks.

system clock | — system operation
/0 clock —> [/O data transmission
cash s l
. by b3 d, N b, e by 4x #I/0 can be transmitted
e C4 C3 €1 in 1 system clock
- Gy d3 / I/O transmission dy
FPGA 1 FPGA 2 l
TDM [3] I/O transmission with ratio 4 increase the effective (.

I/O of FPGAs

[3] Babb et al., 1993.

Motivation

* Instead of increasing the effective 1/0, we try to decrease the
required input pin by folding the circuit.

outputs

(possibly)

reuse
logic
fold -
reduce
#input

inputs

Problem Formulation

* Given a combinational circuit C, with n inputs and m outputs, and a

folding number T, we are asked to fold C, into a sequential circuit Cg,
which

* has n/T inputs and 2 m outputs, and

* after expanding for T time-frames, becomes functionally
equivalent to C. under proper association of their inputs and
outputs.

¢

Algorithm

Structural Method

 |[lustration

outputs

flip-flops

s

intermediate info.
A

time-frame info
A
counter or
shift register

Structural Method

[0 3-adder example (T = 3)

Ao

E@

Dy

119

g

Sjc[8

g

| Js

v

914

Cout

FFs

J \

Y

Y

"0Jul

"oJul
awelj-aWll 91eIPaWIU]

Ay 1)

Functional Method

 Computation flow

|

combinational

circuit C

}j

|

sequential
circuit Cs

}

ollg
scheduling [? \,
FSM
(3] construction
state —
.k
encoding

1 2 [3}——
[i] pin E;] FSM
S

state
cheduling construction “| encoding

Functional Method

* Pin scheduling heuristic:

Convert the given combinational circuit into virtual iterative form.
e Output pin scheduling

* Input pin scheduling) > So
by —— 1,
S1
“ H
o - 4}_\ S2
follow the previous a, —D_
3-adder example

for illustration

X
o)

: 3—— @ B——
Functional Methoa Tl) v 1 3

cheduling construction encoding

* Output pin scheduling:
1. sort the outputs according to their support sizes in an ascending order.

Output So S1 So Cout

support ag, by |ag, by, aq, by lag, by, a4, by, a,, by g, by, aq, by, a,, b,

|support]| 2 4 6 6

)
ascending order (.

: 3—— @ B——
Functional Methoa Tl) v 1 3

cheduling construction encoding

N

* Output pin scheduling:
2. determine the iteration of each output to be scheduled at.

#input of the folded circuit = 2

output So S1 S5 Cout

Support aO) bO aO) bo, all bl ao, bO) al) bll a21 b2 ao, bO; al) bll a21 bZ

|support]| 2/2 4/ 6/ 2 6/2

iteration 1 2 3 3
(®

' 11— (2} G—
Functional Methoa Tl) v 1 3

cheduling construction encoding

N

* Output pin scheduling:
3. null outputs insertion.

iteration 1 2 3
scheduled Sa, null S+, null S5, C
outputs 0’ b 22 ~out

: 1}— 2] El s
Functional Methoa Tt 1

cheduling construction encoding

N

* Input pin scheduling:
» schedule the inputs according to the outputs.

iteration 1 2 3
scheduled I 1
OUtpUtS So, nu S1,nu S2, Cout
scheduled
inputs Ay, by a, by a,, b,

N

: 3—— @ B——
Functional Methoa Tt 1

cheduling construction encoding

 After pin scheduling, the 3-adder becomes virtual iterative.

so null sy null Sy Cout

ao% S6 || [| ||
by o

az [
bz Cout
ay by a; by a, b,
iterative form < .

(time-frame expanded form)

\/

: — @ B——
Functional Methoa T Liomn) 3 e

cheduling construction encoding

N

* FSM construction via time-frame folding [4]:
 State identification via functional decomposition
* Transition construction
S So null s1 null Sy Cout
* FSM minimization | | | | |

ap by a; by a, b, 6

iterative form
[4] Chien et al., 2019. (time-frame expa nded form)

Functional Methoa Tron i) 3 s

cheduling construction encoding

N

e State identification

time-

0 1 2 3
frame
initial state don’t-care
final state

intermediate states

each corresponds to carry-bit of 0/1 6

: 1}— (2] El s
Functional Methoa T Liomn) 3 e

N

cheduling construction encoding

 Transition construction

time-
frame

00/0-, 01/1-, 10/1-

11/0-

Functional Methoa T Liomn) 3 e

cheduling construction encoding

N

* FSM minimization

00/0-, 01/1-, 10/1- 00/00

, 01/1

= @ 0. 10710, 14,9,
00/10, 01/01. Lo/, 111

e 01/0-, 10/0-, 11/1- @

01/10, 00/00, 01/01, 11/11,

10/10 . . 10/01

MeMin [5] o 11/01 o
s W
{s9 sl 52, 53} {s3,53,52} (
.

Carry-save adder

[5] Abel et al., 2015.

. . (2} BF—
Functional Method pin |7 Fsm] state

scheduling construction encoding

* State encoding
Encode each state in the state set S with actual bits, 2 schemes are
applied:
 Natural Encoding with [log(]|S]|)]bits
* One-hot encoding with |S| bits, each of which represents a state in S

¢

Experiments

Experimental Setup

* Implemented in C++ within ABC [6] and used CUDD [7] as the BDD package.
* Environment: Intel(R) Core(TM) i7-8700 3.20GHz CPU and 32GB RAM.

* Benchmark circuits: ISCAS, ITC, MCNC(LGSynth), LEKO/LEKU, Adder, and
EPFL.

e Structural method:

* Imposed the input pin count limitation to 200.
* 11 benchmark circuits with #P1 > 200.

 Functional method

* 11 benchmark circuits, each folded by 4, 8 and 16 time-frames.
* 300s timeout limit on FSM construction and minimization, individually. <]

[6] Brayton et al., 2010. [7] Somenzi et al., 2005.

Structural Method - Results

* Impose the input pin count limitation to 200.

100000 seq. > comb.

2
’
’
d
’
’
-’
’
,
’
’
’
’
-’
’
’
’
-,
’
-’

T A
$ 7\ seq.<comb.
Ag
W

10000

~
-
&
E 1000 gﬁ/‘
> A avg. #LUT
: A"
5 s A overhead
A A
100 A simple 46.59%
<A
Ast 34.84%
10 Pt
10 100 1000 10000 100000

comb. size (#LUT)

Functional Method - Results

e 29 out of 33 cases done within time limit.

‘\seq. > comb.

seq. size (H#LUT)

1000

[EEN
o
o

10

10

(2 g 2

\
.
\
\
\
o'® >0 »
\
\
\
\
N

o >

100
comb. size (#LUT)

4

A

1000

\seq. < comb.

A st-t16
A st-t8
A st-t4
e fn-t16
e fn-t8
e fn-t4

The functional method achieved
44.93% #LUT reduction and

64.93% #FF reduction
over the structural method

¢

Runtime Comparison

* 4 out of 33 cases exceeded time limit when folded by the functional
method, while all cases done within 1s by the structural method.

5 circuits folded by 4 time-frames

100000

10000

1000

100
10 I

64-adder b17-C* too_large

runtime (ms)

[EEY

Conclusions & Future Work

Conclusions & Future Work

* We have formulated a circuit folding approach to time multiplexing
on FPGAs. The structural and functional methods have been
proposed and implemented to demonstrate their potentials to
alleviate the 1/0O-pin bottleneck of FPGAs.

* Experiments suggested that

Structural Method Functional Method
* fast and efficient * high computational cost
* higher circuit complexity * less FF and LUT usage
* Future work: combines the 2 methods to achieve both 6

scalability and optimality.

Questions

Feel free to ask any questions.

