
Time Multiplexing
via Circuit Folding

Po-Chun Chien†, Jie-Hong Roland Jiang†‡

ALCom Lab

‡Department of Electrical Engineering
†Graduate Institute of Electronics Engineering

National Taiwan University

Speaker Bio

• Po-Chun Chien is a 2nd-year master’s student.

• I am planning to apply for PhD (fall 2021).

• Contact: r07943091@ntu.edu.tw

• Affiliation:
• ALCom Lab (led by Jie-Hong Roland Jiang)
• GIEE, NTU

• Research Interests:
• Logic synthesis
• System verification
• Machine learning

2

mailto:r07943091@ntu.edu.tw

Outline

• Introduction

• Algorithm
• Structural folding method

• Functional folding method

• Experiments

• Conclusions & future work

3

Introduction

Multi-FPGA System

• Multi-FPGA boards are commonly used for system emulation [1] and
prototyping.

[1] Myaing et al., 2011.

system
specification

RTL
development

software
development

FPGA1 FPGA2

FPGA3 FPGA4

multi-FPGA
prototyping

system

interconnection

5

FPGA I/O bottleneck

[2] Hung et al., 2018.

→ I/Os become scarce resources

ratio of FPGA logic capacity over I/Os (retrieved from [2])

6

Time Division Multiplexing (TDM)

• The system requires 2 separate clocks.

[3] Babb et al., 1993.

TDM [3] I/O transmission with ratio 4

I/O data transmission

system operation

4x #I/O can be transmitted
in 1 system clock

increase the effective
I/O of FPGAs

7

Motivation

• Instead of increasing the effective I/O, we try to decrease the
required input pin by folding the circuit.

combinational
fold

combinational

s
e
q
u
e
n
ti
a
l

outputs

inputs

reuse
logic

reduce
#input

(possibly)

8

Problem Formulation

• Given a combinational circuit 𝐶𝑐 with 𝑛 inputs and 𝑚 outputs, and a
folding number 𝑇, we are asked to fold 𝐶𝑐 into a sequential circuit 𝐶𝑆,
which

• has 𝒏/𝑻 inputs and ≥ 𝑚 outputs, and

• after expanding for 𝑇 time-frames, becomes functionally
equivalent to 𝐶𝑐 under proper association of their inputs and
outputs.

9

Algorithm

Structural Method

• Illustration

𝑋𝑇

…
inputs

outputs
flip-flops

co
u

n
te

r
o

r
sh

if
t

re
gi

st
er

ti
m

e-
fr

am
e

in
fo

.

…

in
te

rm
ed

ia
te

 in
fo

.

𝑋2𝑋1
11

Structural Method

 3-adder example (𝑇 = 3)

12

𝑔5

𝑔6

𝑔7

𝑔4

𝑔8

𝑠1

𝑎1

𝑏1

𝑔12

𝑔9

𝑔13

𝑔11

𝑔14

𝑠2

𝑐𝑜𝑢𝑡

𝑎2

𝑏2

𝑔1

𝑔2

𝑠0

𝑏0

𝑎0
In

term
ed

iate
in

fo
.

FFs

tim
e-fram

e
in

fo
.

Functional Method

• Computation flow

13

Functional Method

• Pin scheduling heuristic:

Convert the given combinational circuit into virtual iterative form.

• Output pin scheduling

• Input pin scheduling

14

follow the previous
3-adder example

for illustration

Functional Method

• Output pin scheduling:
1. sort the outputs according to their support sizes in an ascending order.

15

output 𝑠0 𝑠1 𝑠2 𝑐𝑜𝑢𝑡

support 𝑎0, 𝑏0 𝑎0, 𝑏0, 𝑎1, 𝑏1 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2

|support| 2 4 6 6

ascending order

Functional Method

• Output pin scheduling:
2. determine the iteration of each output to be scheduled at.

16

output 𝑠0 𝑠1 𝑠2 𝑐𝑜𝑢𝑡

support 𝑎0, 𝑏0 𝑎0, 𝑏0, 𝑎1, 𝑏1 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2

|support| 2 4 6 6

output 𝑠0 𝑠1 𝑠2 𝑐𝑜𝑢𝑡

support 𝑎0, 𝑏0 𝑎0, 𝑏0, 𝑎1, 𝑏1 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2

|support| 2 4 6 6

iteration 1 2 3 3

#input of the folded circuit = 2

/ 2 / 2 / 2/ 2

Functional Method

• Output pin scheduling:
3. null outputs insertion.

17

iteration 1 2 3

scheduled
outputs

𝑠0, 𝑛𝑢𝑙𝑙 𝑠1, 𝑛𝑢𝑙𝑙 𝑠2, 𝑐𝑜𝑢𝑡

Functional Method

• Input pin scheduling:
• schedule the inputs according to the outputs.

18

iteration 1 2 3

scheduled
outputs

𝑠0, 𝑛𝑢𝑙𝑙 𝑠1, 𝑛𝑢𝑙𝑙 𝑠2, 𝑐𝑜𝑢𝑡

scheduled
inputs

𝑎0, 𝑏0 𝑎1, 𝑏1 𝑎2, 𝑏2

Functional Method

• After pin scheduling, the 3-adder becomes virtual iterative.

19

𝑛𝑢𝑙𝑙

𝑎1 𝑏1 𝑎2 𝑏2

𝑠1

𝑏0𝑎0

𝑐𝑜𝑢𝑡𝑠2𝑛𝑢𝑙𝑙𝑠0

iterative form
(time-frame expanded form)

Functional Method

• FSM construction via time-frame folding [4]:
• State identification via functional decomposition

• Transition construction

• FSM minimization

[4] Chien et al., 2019.
20

𝑛𝑢𝑙𝑙

𝑎1 𝑏1 𝑎2 𝑏2

𝑠1

𝑏0𝑎0

𝑐𝑜𝑢𝑡𝑠2𝑛𝑢𝑙𝑙𝑠0

iterative form
(time-frame expanded form)

Functional Method

• State identification

21

time-
frame

0 1 2 3

initial state don’t-care
final state

intermediate states
each corresponds to carry-bit of 0/1

Functional Method

• Transition construction

22

0 1 2 3
time-
frame

Functional Method

• FSM minimization

[5] Abel et al., 2015.
23

MeMin [5]

Carry-save adder

Functional Method

• State encoding
Encode each state in the state set 𝑆 with actual bits, 2 schemes are
applied:

• Natural Encoding with log 𝑆 bits

• One-hot encoding with 𝑆 bits, each of which represents a state in 𝑆

24

Experiments

Experimental Setup

• Implemented in C++ within ABC [6] and used CUDD [7] as the BDD package.

• Environment: Intel(R) Core(TM) i7-8700 3.20GHz CPU and 32GB RAM.

• Benchmark circuits: ISCAS, ITC, MCNC(LGSynth), LEKO/LEKU, Adder, and
EPFL.

• Structural method:
• Imposed the input pin count limitation to 200.

• 11 benchmark circuits with #PI > 200.

• Functional method
• 11 benchmark circuits, each folded by 4, 8 and 16 time-frames.

• 300s timeout limit on FSM construction and minimization, individually.

[6] Brayton et al., 2010. [7] Somenzi et al., 2005.
26

Structural Method - Results

• Impose the input pin count limitation to 200.

10

100

1000

10000

100000

10 100 1000 10000 100000

se
q

. s
iz

e
(#

LU
T)

comb. size (#LUT)

simple

st

seq. < comb.

seq. > comb.

avg. #LUT
overhead

46.59%

34.84%

27

Functional Method - Results

• 29 out of 33 cases done within time limit.

10

100

1000

10 100 1000

se
q

. s
iz

e
(#

LU
T)

comb. size (#LUT)

st-t16

st-t8

st-t4

fn-t16

fn-t8

fn-t4

seq. < comb.

seq. > comb.

The functional method achieved
44.93% #LUT reduction and
64.93% #FF reduction
over the structural method

28

Runtime Comparison

• 4 out of 33 cases exceeded time limit when folded by the functional
method, while all cases done within 1s by the structural method.

29

1

10

100

1000

10000

100000

64-adder b17-C* i2 i4 too_large

ru
n

ti
m

e
(m

s)

5 circuits folded by 4 time-frames

st fn

Conclusions & Future Work

• We have formulated a circuit folding approach to time multiplexing
on FPGAs. The structural and functional methods have been
proposed and implemented to demonstrate their potentials to
alleviate the I/O-pin bottleneck of FPGAs.

• Experiments suggested that

• Future work: combines the 2 methods to achieve both

scalability and optimality.

Conclusions & Future Work

Structural Method

• fast and efficient

• higher circuit complexity

Functional Method

• high computational cost

• less FF and LUT usage

31

Questions
Feel free to ask any questions.

