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Introduction



Multi-FPGA System

• Multi-FPGA boards are commonly used for system emulation [1] and 
prototyping.

[1] Myaing et al., 2011.
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FPGA I/O bottleneck

[2] Hung et al., 2018.

→ I/Os become scarce resources

ratio of FPGA logic capacity over I/Os (retrieved from [2])
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Time Division Multiplexing (TDM)

• The system requires 2 separate clocks.

[3] Babb et al., 1993.

TDM [3] I/O transmission with ratio 4

I/O data transmission

system operation

4x #I/O can be transmitted
in 1 system clock

increase the effective 
I/O of FPGAs
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Motivation

• Instead of increasing the effective I/O, we try to decrease the 
required input pin by folding the circuit.
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Problem Formulation

• Given a combinational circuit 𝐶𝑐 with 𝑛 inputs and 𝑚 outputs, and a 
folding number 𝑇, we are asked to fold 𝐶𝑐 into a sequential circuit 𝐶𝑆, 
which

• has 𝒏/𝑻 inputs and ≥ 𝑚 outputs, and

• after expanding for 𝑇 time-frames, becomes functionally 
equivalent to 𝐶𝑐 under proper association of their inputs and 
outputs.
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Algorithm



Structural Method

• Illustration
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Structural Method

 3-adder example (𝑇 = 3)
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Functional Method

• Computation flow
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Functional Method

• Pin scheduling heuristic:

Convert the given combinational circuit into virtual iterative form.

• Output pin scheduling

• Input pin scheduling
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Functional Method

• Output pin scheduling:
1. sort the outputs according to their support sizes in an ascending order.
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output 𝑠0 𝑠1 𝑠2 𝑐𝑜𝑢𝑡

support 𝑎0, 𝑏0 𝑎0, 𝑏0, 𝑎1, 𝑏1 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2

|support| 2 4 6 6

ascending order



Functional Method

• Output pin scheduling:
2. determine the iteration of each output to be scheduled at.
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output 𝑠0 𝑠1 𝑠2 𝑐𝑜𝑢𝑡

support 𝑎0, 𝑏0 𝑎0, 𝑏0, 𝑎1, 𝑏1 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2

|support| 2 4 6 6

output 𝑠0 𝑠1 𝑠2 𝑐𝑜𝑢𝑡

support 𝑎0, 𝑏0 𝑎0, 𝑏0, 𝑎1, 𝑏1 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2

|support| 2 4 6 6

iteration 1 2 3 3

#input of the folded circuit = 2

/ 2 / 2 / 2/ 2



Functional Method

• Output pin scheduling:
3. null outputs insertion.
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Functional Method

• Input pin scheduling:
• schedule the inputs according to the outputs.
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Functional Method

• After pin scheduling, the 3-adder becomes virtual iterative.
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Functional Method

• FSM construction via time-frame folding [4]:
• State identification via functional decomposition

• Transition construction

• FSM minimization

[4] Chien et al., 2019.
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Functional Method

• State identification
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Functional Method

• Transition construction
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Functional Method

• FSM minimization

[5] Abel et al., 2015.
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MeMin [5]

Carry-save adder



Functional Method

• State encoding
Encode each state in the state set 𝑆 with actual bits, 2 schemes are 
applied:

• Natural Encoding with log 𝑆 bits

• One-hot encoding with 𝑆 bits, each of which represents a state in 𝑆
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Experiments



Experimental Setup

• Implemented in C++ within ABC [6] and used CUDD [7] as the BDD package.

• Environment: Intel(R) Core(TM) i7-8700 3.20GHz CPU and 32GB RAM.

• Benchmark circuits: ISCAS, ITC, MCNC(LGSynth), LEKO/LEKU, Adder, and 
EPFL.

• Structural method:
• Imposed the input pin count limitation to 200.

• 11 benchmark circuits with #PI > 200.

• Functional method
• 11 benchmark circuits, each folded by 4, 8 and 16 time-frames.

• 300s timeout limit on FSM construction and minimization, individually.

[6] Brayton et al., 2010.  [7] Somenzi et al., 2005.
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Structural Method - Results

• Impose the input pin count limitation to 200.
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Functional Method - Results

• 29 out of 33 cases done within time limit.
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Runtime Comparison

• 4 out of 33 cases exceeded time limit when folded by the functional 
method, while all cases done within 1s by the structural method.
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Conclusions & Future Work



• We have formulated a circuit folding approach to time multiplexing
on FPGAs. The structural and functional methods have been
proposed and implemented to demonstrate their potentials to
alleviate the I/O-pin bottleneck of FPGAs.

• Experiments suggested that

• Future work: combines the 2 methods to achieve both

scalability and optimality.

Conclusions & Future Work

Structural Method

• fast and efficient

• higher circuit complexity

Functional Method

• high computational cost

• less FF and LUT usage
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Questions
Feel free to ask any questions.


