
Time-Frame Folding:
Back to the Sequentiality

ICCAD 05.11.2019

Po-Chun Chien†, Jie-Hong Roland Jiang†‡

ALCom Lab

‡Department of Electrical Engineering,
†Graduate Institute of Electronics Engineering

National Taiwan University

1

Outline

 Introduction

 Time-Frame Unfolding vs. Folding

 Algorithm

 State Identification

 Transition Reconstruction

 Experiments

 Setup

 Results & Discussion

 Conclusions

2

INTRODUCTION

3

Time-Frame Unfolding

 TFU, or time-frame expansion

 A technique often used in ATPG, BMC

4

 An example sequential circuit

5

Sequential circuit s27

Time-Frame Unfolding

 Expand 3 time-frames

6

Regular duplication

with flip-flops from consecutive time-frames connected

Time-Frame Unfolding

7

with initial state propagation and simplification

𝑦1 = 𝑓 𝑋1 𝑦2 = 𝑔 𝑋1, 𝑋2 𝑦3 = ℎ 𝑋1, 𝑋2, 𝑋3

𝑋1 𝑋2 𝑋3

Iterative formCan we reverse it?

Time-Frame Unfolding

 Expand 3 time-frames

Motivation

 In model-based testing of software systems [1, 2], one
may be asked to compute synchronizing, distinguishing,
or homing sequences.

 These problems can be formulated as quantified Boolean
formula (QBF) [3, 4] solving of strategy derivation.

 The derived strategy corresponds to a large (iterative)
combinational circuit. However, it can be alternatively
represented more compactly by a sequential circuit.

 How can one reconstruct a sequential circuit from an
iterative combinational circuit?

8
[1] Sandberg et al., 2005. [2] Kushiket al., 2016. [3] Bieree t al., 2009. [4] Wang et al., 2017.

Time-Frame Folding

 TFF is a reverse operation of TFU

9

Given: a k-iterative combinational circuit

Goal: obtain a sequential circuit that
• is equivalent within bounded k time-frames
• has minimized state transition graph (STG)

(no assumption is made on the circuit structure except
for the iterative form)

ALGORITHM

10

Computation Flow

11

Notations

 𝑋𝑡 = 𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝑛
𝑡

 𝑋𝑡: the set of inputs at 𝑡𝑡ℎ time-frame

 𝑥𝑖
𝑡: the 𝑖𝑡ℎ input at 𝑡𝑡ℎ time-frame

 𝑌𝑡= 𝑦1
𝑡 , 𝑦2

𝑡 , … , 𝑦𝑚
𝑡

 𝑌𝑡: the set of outputs at 𝑡𝑡ℎ time-frame

 𝑦1
𝑡: the 𝑖𝑡ℎ output at 𝑡𝑡ℎ time-frame

 𝑆𝑡 = 𝑞1
𝑡 , 𝜏𝑞1𝑡 , 𝑞2

𝑡 , 𝜏𝑞2𝑡 , … , 𝑞𝑘
𝑡 , 𝜏𝑞𝑘

𝑡

 𝑆𝑡: the set of states at 𝑡𝑡ℎ time-frame

 𝑞𝑖
𝑡: the symbol of the 𝑖𝑡ℎ state at 𝑡𝑡ℎ time-frame

 𝜏𝑞𝑖
𝑡: transition condition of 𝑞𝑖

𝑡

12

State Identification

 Functional decomposition [5, 6]

13

𝑋𝜆: bound set, 𝑋𝜇: free set

[5] Lai et al., 1993. [6] Chang et al., 1996.

State Identification

 BDD-based decomposition

14

3 equivalence classes

𝑥2
1𝑥4

1, 𝑥1
1 𝑥2

1𝑥3
1 + 𝑥2

1 𝑥4
1 , 𝑥1

1 𝑥2
1 + 𝑥4

1 + 𝑥1
1𝑥2

1𝑥3
1

forming a partition on 𝔹 𝑋1

0000
0001
0010
0011

-0
-1

0
1
1
-

0
0
-0

1
1
--

1
0
-0

0
1
0
-

0
0
0
0

1
0
1
0

1
1
1
1

1
0
1
0

1
1
1
1

1
1
1
1

𝑥1
2𝑥2

2𝑥3
2𝑥4

2

𝑥 1
1
𝑥
21
𝑥
31
𝑥
41

… … ……

free

b
o
u
n
d

D
e
c
o
m

p
o
s
it
io

n
 c

h
a
rt

column
patterns

𝑋2

𝑋3

𝑋4

𝑋1

𝑆2

𝑆3

…

State
set

𝑆1

𝑦1
3𝑦2

3𝑦3
3

𝑦1
4𝑦2

4𝑦3
4

𝑦1
2𝑦2

2𝑦3
2

𝑌3 𝑌4𝑌2

State Identification

 State set 𝑆𝑡 reached at 𝑡𝑡ℎ time-frame is determined by
𝑌𝑡+1, 𝑌𝑡+2, … , 𝑌𝑇

15

cuts under
consideration

time-frame

index

State Identification

 𝑆𝑡 derivation

16

𝑋𝑡+1, 𝑋𝑡+2

𝑋1, … , 𝑋𝑡

𝑦1
𝑡+2𝑦1

𝑡+1

𝑋𝑡+1

𝑋1, … , 𝑋𝑡

𝑋𝑡+1, 𝑋𝑡+2

𝑋1, … , 𝑋𝑡

𝑦1
𝑡+2𝑦1

𝑡+1

𝑋𝑡+1

𝑋1, … , 𝑋𝑡

different partitions

on 𝔹 X1,…,Xt

State Identification

 Partition refinement

17

𝑃1 𝑃2

𝑃4
(refinement of 𝑃1, 𝑃2, 𝑃3)

𝑃3

a cell

State Identification

 Hyper-function encoding [7]:
E.g. for a multi-output function

𝐹 𝑋 = 𝑓1 𝑋 , 𝑓2 𝑋 , 𝑓3 𝑋 , 𝑓4 𝑋

introduce 𝐴 = 𝛼1, 𝛼2 to encode 𝐹 into

ℎ 𝑋, 𝐴 = 𝛼1 𝛼2𝑓1 + 𝛼1𝛼2𝑓2 + 𝛼1𝛼2𝑓3 + 𝛼1𝛼2𝑓4

single-output functional decomposition algorithm can be

applied

18
[7] Jiang et al., 1998.

State Identification

 s27 example revisited

19

𝑆1 derivation 𝑆2 derivation

Hyper-functions

State Identification

 Transition condition 𝜏𝑞𝑗
𝑡 of state 𝑞𝑗

𝑡

20

ℎ𝑦𝑝𝑒𝑟-𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌𝑡+1, … , 𝑌𝑇

…

𝑋1, 𝑋2…𝑋𝑡

𝑋𝑡+1…𝑋𝑇

𝛼1… 𝛼𝑘

𝑞𝑗
𝑡

1 0 0

𝜏𝑞𝑗
𝑡 𝑋1, 𝑋2…𝑋𝑡 :

collection of paths
starting from 𝑞1

0

leading to 𝑞𝑗
𝑡

initial state 𝑞1
0

state set 𝑆𝑡

Transition Reconstruction

 Find the transition between state pairs

21

𝑞1
𝑡+1

𝑆𝑡+1

…

𝑞𝑖
𝑡−1

𝑞1
𝑡−1

𝑞1
𝑡−1

𝑆𝑡−1

…
…

𝑞𝑗
𝑡

𝑞1
𝑡

𝑞1
𝑡

𝑆𝑡

…
…

𝑞1
𝑡−2

𝑆𝑡−2

…

?
……

Transition Reconstruction

 For each pair of state 𝑞𝑖
𝑡−1, 𝑞𝑗

𝑡 in adjacent 2 time-frames:

 Input transition condition:

𝜑𝑖,𝑗
𝑡 = ∃𝑋1, … , 𝑋𝑡−1. 𝜏𝑞𝑖

𝑡−1 ∧ 𝜏𝑞𝑗
𝑡

 Output transition response

𝜓𝑖,𝑘
𝑡 = ∃𝑋1, … , 𝑋𝑡−1. 𝜏𝑞𝑖

𝑡 ∧ 𝑦𝑘
𝑡

22

paths to 𝑞𝑗
𝑡 through 𝑞𝑖

𝑡−1global → local info.

State Minimization

23

MeMin [8]

Don’t care
state

[8] Abel et al., 2015.

 s27 example revisited

State Encoding

 Encode each state in the state set 𝑄 with actual
bits, 2 schemes are applied:

 Natural Encoding with log 𝑄 bits

 One-hot encoding with 𝑄 bits, each of which
represents a state in Q.

24

EXPERIMENTS

25

Setup

 Implemented in C++ within ABC [9] and used
CUDD [10] as the underlying BDD package.

 Environment: Intel(R) Xeon(R) CPU E5-2620 v4
of 2.10 GHz and 126 GB RAM

 Benchmark circuits

 Unfolded ISCAS/ITC circuits

 QBF solving of homing sequence [4]

 300s timeout limit

26
[4] Wang et al., 2017. [9] Brayton et al., 2010. [10] Somenzi et al., 2005.

 Number of states

Results

27
#state vs. #time-frame.

b07
b18

s386

s15850

: #state before minimization
: #state after minimization

saturated

Results

 Total runtime

28

runtime vs. #time-frame.
Time-Fold
MeMin

b07 s15850 s386 b18

Results

29

Results on folding with “fixed points” reached.

Results

30

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

se
q

. c
ir

cu
it

 s
iz

e

comb. circuit size

Circuit size comparison.

ISCAS/ITC
QBF HS

seq. < comb.

seq. > comb.

Conclusions

 We have formulated the time-frame folding problem, and
provided a computational solution based on functional
decomposition.

 Our method guarantees the folded sequential circuit is state
minimized.

 Experimental results demonstrated the benefit of our
method in circuit compaction from an iterative combinational
circuit to its sequential counterpart.

 Our method can be useful in testbench generation,
sequential synthesis of bounded strategies, and other
applications.

31

THE END

32

