
Time-Frame Folding:
Back to the Sequentiality

ICCAD 05.11.2019

Po-Chun Chien†, Jie-Hong Roland Jiang†‡

ALCom Lab

‡Department of Electrical Engineering,
†Graduate Institute of Electronics Engineering

National Taiwan University

1

Outline

 Introduction

 Time-Frame Unfolding vs. Folding

 Algorithm

 State Identification

 Transition Reconstruction

 Experiments

 Setup

 Results & Discussion

 Conclusions

2

INTRODUCTION

3

Time-Frame Unfolding

 TFU, or time-frame expansion

 A technique often used in ATPG, BMC

4

 An example sequential circuit

5

Sequential circuit s27

Time-Frame Unfolding

 Expand 3 time-frames

6

Regular duplication

with flip-flops from consecutive time-frames connected

Time-Frame Unfolding

7

with initial state propagation and simplification

𝑦1 = 𝑓 𝑋1 𝑦2 = 𝑔 𝑋1, 𝑋2 𝑦3 = ℎ 𝑋1, 𝑋2, 𝑋3

𝑋1 𝑋2 𝑋3

Iterative formCan we reverse it?

Time-Frame Unfolding

 Expand 3 time-frames

Motivation

 In model-based testing of software systems [1, 2], one
may be asked to compute synchronizing, distinguishing,
or homing sequences.

 These problems can be formulated as quantified Boolean
formula (QBF) [3, 4] solving of strategy derivation.

 The derived strategy corresponds to a large (iterative)
combinational circuit. However, it can be alternatively
represented more compactly by a sequential circuit.

 How can one reconstruct a sequential circuit from an
iterative combinational circuit?

8
[1] Sandberg et al., 2005. [2] Kushiket al., 2016. [3] Bieree t al., 2009. [4] Wang et al., 2017.

Time-Frame Folding

 TFF is a reverse operation of TFU

9

Given: a k-iterative combinational circuit

Goal: obtain a sequential circuit that
• is equivalent within bounded k time-frames
• has minimized state transition graph (STG)

(no assumption is made on the circuit structure except
for the iterative form)

ALGORITHM

10

Computation Flow

11

Notations

 𝑋𝑡 = 𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝑛
𝑡

 𝑋𝑡: the set of inputs at 𝑡𝑡ℎ time-frame

 𝑥𝑖
𝑡: the 𝑖𝑡ℎ input at 𝑡𝑡ℎ time-frame

 𝑌𝑡= 𝑦1
𝑡 , 𝑦2

𝑡 , … , 𝑦𝑚
𝑡

 𝑌𝑡: the set of outputs at 𝑡𝑡ℎ time-frame

 𝑦1
𝑡: the 𝑖𝑡ℎ output at 𝑡𝑡ℎ time-frame

 𝑆𝑡 = 𝑞1
𝑡 , 𝜏𝑞1𝑡 , 𝑞2

𝑡 , 𝜏𝑞2𝑡 , … , 𝑞𝑘
𝑡 , 𝜏𝑞𝑘

𝑡

 𝑆𝑡: the set of states at 𝑡𝑡ℎ time-frame

 𝑞𝑖
𝑡: the symbol of the 𝑖𝑡ℎ state at 𝑡𝑡ℎ time-frame

 𝜏𝑞𝑖
𝑡: transition condition of 𝑞𝑖

𝑡

12

State Identification

 Functional decomposition [5, 6]

13

𝑋𝜆: bound set, 𝑋𝜇: free set

[5] Lai et al., 1993. [6] Chang et al., 1996.

State Identification

 BDD-based decomposition

14

3 equivalence classes

𝑥2
1𝑥4

1, 𝑥1
1 𝑥2

1𝑥3
1 + 𝑥2

1 𝑥4
1 , 𝑥1

1 𝑥2
1 + 𝑥4

1 + 𝑥1
1𝑥2

1𝑥3
1

forming a partition on 𝔹 𝑋1

0000
0001
0010
0011

-0
-1

0
1
1
-

0
0
-0

1
1
--

1
0
-0

0
1
0
-

0
0
0
0

1
0
1
0

1
1
1
1

1
0
1
0

1
1
1
1

1
1
1
1

𝑥1
2𝑥2

2𝑥3
2𝑥4

2

𝑥 1
1
𝑥
21
𝑥
31
𝑥
41

… … ……

free

b
o
u
n
d

D
e
c
o
m

p
o
s
it
io

n
 c

h
a
rt

column
patterns

𝑋2

𝑋3

𝑋4

𝑋1

𝑆2

𝑆3

…

State
set

𝑆1

𝑦1
3𝑦2

3𝑦3
3

𝑦1
4𝑦2

4𝑦3
4

𝑦1
2𝑦2

2𝑦3
2

𝑌3 𝑌4𝑌2

State Identification

 State set 𝑆𝑡 reached at 𝑡𝑡ℎ time-frame is determined by
𝑌𝑡+1, 𝑌𝑡+2, … , 𝑌𝑇

15

cuts under
consideration

time-frame

index

State Identification

 𝑆𝑡 derivation

16

𝑋𝑡+1, 𝑋𝑡+2

𝑋1, … , 𝑋𝑡

𝑦1
𝑡+2𝑦1

𝑡+1

𝑋𝑡+1

𝑋1, … , 𝑋𝑡

𝑋𝑡+1, 𝑋𝑡+2

𝑋1, … , 𝑋𝑡

𝑦1
𝑡+2𝑦1

𝑡+1

𝑋𝑡+1

𝑋1, … , 𝑋𝑡

different partitions

on 𝔹 X1,…,Xt

State Identification

 Partition refinement

17

𝑃1 𝑃2

𝑃4
(refinement of 𝑃1, 𝑃2, 𝑃3)

𝑃3

a cell

State Identification

 Hyper-function encoding [7]:
E.g. for a multi-output function

𝐹 𝑋 = 𝑓1 𝑋 , 𝑓2 𝑋 , 𝑓3 𝑋 , 𝑓4 𝑋

introduce 𝐴 = 𝛼1, 𝛼2 to encode 𝐹 into

ℎ 𝑋, 𝐴 = 𝛼1 𝛼2𝑓1 + 𝛼1𝛼2𝑓2 + 𝛼1𝛼2𝑓3 + 𝛼1𝛼2𝑓4

single-output functional decomposition algorithm can be

applied

18
[7] Jiang et al., 1998.

State Identification

 s27 example revisited

19

𝑆1 derivation 𝑆2 derivation

Hyper-functions

State Identification

 Transition condition 𝜏𝑞𝑗
𝑡 of state 𝑞𝑗

𝑡

20

ℎ𝑦𝑝𝑒𝑟-𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌𝑡+1, … , 𝑌𝑇

…

𝑋1, 𝑋2…𝑋𝑡

𝑋𝑡+1…𝑋𝑇

𝛼1… 𝛼𝑘

𝑞𝑗
𝑡

1 0 0

𝜏𝑞𝑗
𝑡 𝑋1, 𝑋2…𝑋𝑡 :

collection of paths
starting from 𝑞1

0

leading to 𝑞𝑗
𝑡

initial state 𝑞1
0

state set 𝑆𝑡

Transition Reconstruction

 Find the transition between state pairs

21

𝑞1
𝑡+1

𝑆𝑡+1

…

𝑞𝑖
𝑡−1

𝑞1
𝑡−1

𝑞1
𝑡−1

𝑆𝑡−1

…
…

𝑞𝑗
𝑡

𝑞1
𝑡

𝑞1
𝑡

𝑆𝑡

…
…

𝑞1
𝑡−2

𝑆𝑡−2

…

?
……

Transition Reconstruction

 For each pair of state 𝑞𝑖
𝑡−1, 𝑞𝑗

𝑡 in adjacent 2 time-frames:

 Input transition condition:

𝜑𝑖,𝑗
𝑡 = ∃𝑋1, … , 𝑋𝑡−1. 𝜏𝑞𝑖

𝑡−1 ∧ 𝜏𝑞𝑗
𝑡

 Output transition response

𝜓𝑖,𝑘
𝑡 = ∃𝑋1, … , 𝑋𝑡−1. 𝜏𝑞𝑖

𝑡 ∧ 𝑦𝑘
𝑡

22

paths to 𝑞𝑗
𝑡 through 𝑞𝑖

𝑡−1global → local info.

State Minimization

23

MeMin [8]

Don’t care
state

[8] Abel et al., 2015.

 s27 example revisited

State Encoding

 Encode each state in the state set 𝑄 with actual
bits, 2 schemes are applied:

 Natural Encoding with log 𝑄 bits

 One-hot encoding with 𝑄 bits, each of which
represents a state in Q.

24

EXPERIMENTS

25

Setup

 Implemented in C++ within ABC [9] and used
CUDD [10] as the underlying BDD package.

 Environment: Intel(R) Xeon(R) CPU E5-2620 v4
of 2.10 GHz and 126 GB RAM

 Benchmark circuits

 Unfolded ISCAS/ITC circuits

 QBF solving of homing sequence [4]

 300s timeout limit

26
[4] Wang et al., 2017. [9] Brayton et al., 2010. [10] Somenzi et al., 2005.

 Number of states

Results

27
#state vs. #time-frame.

b07
b18

s386

s15850

: #state before minimization
: #state after minimization

saturated

Results

 Total runtime

28

runtime vs. #time-frame.
Time-Fold
MeMin

b07 s15850 s386 b18

Results

29

Results on folding with “fixed points” reached.

Results

30

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

se
q

. c
ir

cu
it

 s
iz

e

comb. circuit size

Circuit size comparison.

ISCAS/ITC
QBF HS

seq. < comb.

seq. > comb.

Conclusions

 We have formulated the time-frame folding problem, and
provided a computational solution based on functional
decomposition.

 Our method guarantees the folded sequential circuit is state
minimized.

 Experimental results demonstrated the benefit of our
method in circuit compaction from an iterative combinational
circuit to its sequential counterpart.

 Our method can be useful in testbench generation,
sequential synthesis of bounded strategies, and other
applications.

31

THE END

32

