Time-Frame Folding: Back to the Sequentiality

ICCAD 05.11.2019 <u>Po-Chun Chien[†]</u>, Jie-Hong Roland Jiang^{†‡}

ALCom Lab

*Department of Electrical Engineering, *Graduate Institute of Electronics Engineering National Taiwan University

Outline

Introduction

Time-Frame Unfolding vs. Folding

Algorithm

- State Identification
- Transition Reconstruction

Experiments

- Setup
- Results & Discussion

Conclusions

INTRODUCTION

TFU, or time-frame expansion
A technique often used in ATPG, BMC

PRIMARY INPUTS

□ An example sequential circuit

Sequential circuit s27

Expand 3 time-frames

Regular duplication

with flip-flops from consecutive time-frames connected

Expand 3 time-frames

with initial state propagation and simplification

$$y^{1} = f(X^{1})$$
 $y^{2} = g(X^{1}, X^{2})$ $y^{3} = h(X^{1}, X^{2}, X^{3})$
Can we reverse it?

Motivation

- In model-based testing of software systems [1, 2], one may be asked to compute synchronizing, distinguishing, or homing sequences.
- These problems can be formulated as quantified Boolean formula (QBF) [3, 4] solving of strategy derivation.
- The derived strategy corresponds to a large (iterative) combinational circuit. However, it can be alternatively represented more compactly by a sequential circuit.
- How can one reconstruct a sequential circuit from an iterative combinational circuit?

Time-Frame Folding

□ TFF is a reverse operation of TFU

Given: a k-iterative combinational circuit

Goal: obtain a sequential circuit that

- is equivalent within bounded k time-frames
- has minimized state transition graph (STG)

(no assumption is made on the circuit structure except for the iterative form)

ALGORITHM

Computation Flow

Notations

- $\square X^{t} = \{x_{1}^{t}, x_{2}^{t}, \dots, x_{n}^{t}\}\$
 - X^t : the set of inputs at t^{th} time-frame
 - x_i^t : the i^{th} input at t^{th} time-frame
- $\Box Y^{t} = \{y_{1}^{t}, y_{2}^{t}, \dots, y_{m}^{t}\}$
 - Y^t : the set of outputs at t^{th} time-frame
 - y_1^t : the i^{th} output at t^{th} time-frame

$$\label{eq:stars} \square \ S^t = \left\{ \left(q_1^t, \tau_{q_1^t} \right), \left(q_2^t, \tau_{q_2^t} \right), \dots, \left(q_k^t, \tau_{q_k^t} \right) \right\}$$

- S^t : the set of states at t^{th} time-frame
- q_i^t : the symbol of the i^{th} state at t^{th} time-frame
- $\tau_{q_i^t}$: transition condition of q_i^t

□ Functional decomposition [5, 6]

 X_{λ} : bound set, X_{μ} : free set

 y^2

BDD-based decomposition

□ State set S^t reached at t^{th} time-frame is determined by $Y^{t+1}, Y^{t+2}, ..., Y^T$

 $\Box S^t$ derivation

Partition refinement

Hyper-function encoding [7]: E.g. for a multi-output function

 $F(X) = \{f_1(X), f_2(X), f_3(X), f_4(X)\}$

introduce $A = \{\alpha_1, \alpha_2\}$ to encode *F* into

$$h(X,A) = \overline{\alpha_1} \,\overline{\alpha_2} f_1 + \overline{\alpha_1} \alpha_2 f_2 + \alpha_1 \overline{\alpha_2} f_3 + \alpha_1 \overline{\alpha_2} f_4$$

single-output functional decomposition algorithm can be applied

□ s27 example revisited

D Transition condition $\tau_{q_i^t}$ of state q_j^t

Transition Reconstruction

□ Find the transition between state pairs

For each pair of state (q_i^{t-1}, q_j^t) in adjacent 2 time-frames:
Input transition condition:

$$\varphi_{i,j}^t = \exists X^1, \dots, X^{t-1} \cdot \underbrace{\tau_{q_i^{t-1}} \wedge \tau_{q_j^t}}_{i}$$

global \rightarrow local info. paths to q_i^t through q_i^{t-1}

Output transition response

$$\psi_{i,k}^t = \exists X^1, \dots, X^{t-1}. \tau_{q_i^t} \wedge y_k^t$$

State Minimization

□ s27 example revisited

Encode each state in the state set Q with actual bits, 2 schemes are applied:

- Natural Encoding with [log(|Q|)] bits
- One-hot encoding with |Q| bits, each of which represents a state in Q.

EXPERIMENTS

Setup

- Implemented in C++ within ABC [9] and used CUDD [10] as the underlying BDD package.
- Environment: Intel(R) Xeon(R) CPU E5-2620 v4 of 2.10 GHz and 126 GB RAM
- Benchmark circuits
 - Unfolded ISCAS/ITC circuits
 - QBF solving of homing sequence [4]
- 300s timeout limit

Number of states

#state vs. #time-frame.

Total runtime

circuit	#time-frame		expanded circuit	natural encoding		one-hot encoding	
	state saturate	fixed point	#gate	#FF	#gate	#FF	#gate
b01	9	9	52	5	109	18	53
b02	6	10	4	3	16	8	15
b03	14	14	189	10	8947	631	1848
b05	69	133	62635	7	52	69	11
b06	6	7	62	4	82	13	45
b07	85	85	24438	7	91	83	94
b08	55	55	6173	10	3395	798	1265
b18	50	50	74461	9	2516	382	1134
s27	3	5	29	3	25	5	42
s298	20	23	1243	8	1489	135	785
s386	8	9	297	4	124	13	74
s820	12	13	2558	5	276	24	8639
s832	12	13	2612	5	248	24	10075
s1488	23	23	11298	6	578	48	406
s1494	23	23	11367	6	526	48	364
s15850	5	5	24	4	28	11	24

Results on folding with "fixed points" reached.

Circuit size comparison.

Conclusions

- We have formulated the time-frame folding problem, and provided a computational solution based on functional decomposition.
- Our method guarantees the folded sequential circuit is state minimized.
- Experimental results demonstrated the benefit of our method in circuit compaction from an iterative combinational circuit to its sequential counterpart.
- Our method can be useful in testbench generation, sequential synthesis of bounded strategies, and other applications.

THE END