Compatible Equivalence Checking of X-Valued Circuits

Authors: Yu-Neng Wang*, Yun-Rong Luo*, Po-Chun Chien*, Ping-Lun Wang,

Hao-Ren Wang, Wan-Hsuan Lin, Jie-Hong Roland Jiang and Chung-Yang Ric Huang

ALCom Lab [EE Dept./ Grad. Inst. of Electronics Eng. National Taiwan University

Combinational Equivalence Checking (CEC)

True when $o_j{=}o_j^{'}$

- *I*: Input pattern
- *G:* Golden netlist
- *-* ^R: Revised netlist
- *-* O/O': Output pattern of G/R under ^I

Compatible Equivalence Checking with X-value (XCEC)

True when $(o_i^-, o_i^+) =$ $(0,0)$, $(1,1)$, $(x,0)$, $(x,1)$, (x,x)

Definition 1. Given two values \hat{a} , $\hat{b} \in \mathbb{T}$, \hat{a} is compatible equivalent to \hat{b} if $(\hat{a}, \hat{b}) \in \{(0,0), (1,1), (x,0), (x,1), (x,x)\}.$ *Otherwise*, \hat{a} is not compatible equivalent to \hat{b} , *i.e.*, $(\hat{a}, \hat{b}) \in$ $\{(0,1), (1,0), (0,x), (1,x)\}.$

- Defined on ternary-valued logic
- Equivalence in golden circuit's
	- care-space
- Asymmetric relation

X-Valued Circuits

- Primitive gates
	- -AND, NAND
	- OR, NOR
	- -XOR, XNOR
	- NOT
- Special gates
	- -DC
	- -MUX

MUX(s,a,b)

Proposed Algorithm Flow

From CEC to XCEC

- SAT solver is only applicable for binary logic

- Internal compatible equivalent pairs cannot be merged

The superiority of X-preserving encoding: implication ability

We compare E_{xy} (X-preserving encoding) with E_{sym} (Symmetric encoding)

- E_{sym} is more succint than E_{xp} for most circuit primitive gates
- However, E_{xp} has stronger implication ability.

 E_{xo} can conclude EQ with 1 bit assignment while E_{sum} needs 2 bits assignment. E_{xp} has stronger implication ability.

The superiority of X-preserving encoding: don't care property

Both a^0a^1 = 01, 11 represents x under Exp. When a^1 = 1, the value of a^0 becomes don't care.

 \rightarrow Replace a^0 to the controlling value/ non controlling value of $o^0.$

controlling value of AND: 0 non controlling value of AND: 1

becomes 0 when $a^1=1$ (propagates the implication toward PO)

becomes 1 when a¹=1 (conditionally disable the fanin a^0 when $a^1=1$)

Dual Rail Encoding

And gate under E_{xx}

$$
o0o1 = AND(a0a1, b0b1)
$$

$$
o0 = a0b0
$$

$$
o1 = a1b1 \vee a1b0 \vee a0b1
$$

• Compute EQ Miter under
$$
E_{xp}
$$

$$
M=\bigvee_{i=1}^{n}(o_{g,i}^{0}\lnot o_{r,i}^{0}\lor \lnot o_{g,i}^{0}o_{r,i}^{0}\lor o_{r,i}^{1})\lnot o_{g,i}^{1}
$$

Internal Compatible EQ(CE) Proving and Learning

 CE $\left(\begin{matrix}a\\b\end{matrix}\right)$ \bigcirc \overline{R} $E_{xp}(\hat{a}) = (a^0, a^1)$ $E_{\text{xp}}(\hat{b}) = (b^0, b^1)$ add to SAT instance

$$
\begin{pmatrix}\n(a^1 \vee \neg b^1) & \uparrow \\
(a^1 \vee a^0 \vee \neg b^0) & \uparrow \\
\wedge (a^1 \vee a^0 \vee \neg b^0) & \uparrow \\
\wedge (a^1 \vee \neg a^0 \vee b^0) & \uparrow\n\end{pmatrix}
$$

Internal Compatible EQ(CE) Proving and Learning

$$
\mathsf{E}_{\mathsf{x}\mathsf{p}}(\hat{a}) = (a^0, a^1)
$$

$$
\mathsf{E}_{\mathsf{x}\mathsf{p}}(\hat{b}) = (b^0, b^1)
$$

add to SAT instance

$$
\begin{pmatrix}\n a^{1} \vee \neg b^{1} & b \\
 a^{1} \wedge (a^{1} \vee a^{0} \vee \neg b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & b \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & c \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & c \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & c \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee b^{0}) & d \\
 a^{1} \wedge (a^{1} \vee \neg a^{0} \vee
$$

Circuit Representation

- Maintain: the high-level X-valued circuit and the low-level AIG.
- High-level circuit: the original ternary-valued circuit (consists of the primitive gates and constants)

Propagating CE relation

Proposition: For a pair of ternary-valued signals $\hat{\rho}_1$ and $\hat{\rho}_2$ with $\hat{o}_1 = AND(\hat{a}_1, \hat{b}_1)$ and $\hat{o}_2 = AND(\hat{a}_2, \hat{b}_2)$, if \hat{a}_1 is CE to \hat{a}_2 and \hat{b}_1 is CE to \hat{b}_2 , then \hat{o}_1 is CE to \hat{o}_2 .

- Although CE pairs cannot be merged, we can use the proposition to propagate CE relation.
- Proving CE relation without time-consuming SAT solving

Experimental Results

Experimental Settings

- 2020 ICCAD CAD Contest Benchmark
	- 30 cases
		- 28 Industrial cases (23 EQ, 5 NEQ)
		- 2 Hard NEQ cases (excluded, no X-values)
	- $-$ 1,000 \sim 100,000 #Gates
	- Timeout limit 1800 secs
- Solver Setting
	- Berkeley ABC [1] (ABC 1.01 commit 5c8ee4a2c142d133afe4cbfe567b300fe4d040a8)
	- Incremental SAT solver: Glucose [2] (Glucose 3.0)
	- Final SAT solver: kissat [3] (kissat sc2020, target UNSAT)

Flow Comparison

Performance Evaluation

- Flow
	- xcec: encode \rightarrow ABC circuit optimization \rightarrow SAT solving
	- cepr: encode \rightarrow ABC circuit optimization \rightarrow CE proving and learning \rightarrow SAT solving
- Encoding
	- x-preserving (E_{xp})
		- controlling value (E_{xp}^c)
		- non-controlling value (E_{xp}^{nc})
	- symmetric (E_{sym})
- Baseline Method
	- Symmetric encoding
	- Other contestants
	- Conformal LEC

The superiority of X-preserving encoding: implication ability

- Under xcec flow, E_{xp} solves 18 cases in less total time than E_{sum} .

The superiority of X-preserving encoding: implication ability

Compare Exp and Esym under two flows:

- xcec: encode \rightarrow ABC circuit optimization \rightarrow SAT solving
- dsat: encode \rightarrow SAT solving

The superiority of Exp over Esym is independent of synthesis tool.

The superiority of X-preserving encoding: don't care property

a 1= 1

 \rightarrow the value of a⁰ becomes don't care \rightarrow replace a^0 to the controlling value/ non controlling value of o^0 .

Internal CE Learning Improves Final SAT Solving

Conclusion

- With stronger implication ability, x-preserving encoding outperforms traditional symmetric encoding.
- Using don't-care property further improves the performance of x-preserving encoding.
- Learned clauses from internal CE relation speed up final SAT solving.

Thank you for your listening

Acknowledgement

- Cadence …
- 2nd, 3rd Place ...