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INTRODUCTION



Circuit Folding Illustration

0 Circuit folding is a process of transforming a
combinational circuit C,. into a sequential circuit Cs,
which after time-frame expansion, is functionally
equivalent to C..
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Time-Frame Unfolding

0 TFU, or time-frame expansion
0 A technique often used in ATPG, BMC
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Time-Frame Unfolding

[0 An example sequential circuit
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Time-Frame Unfolding

0 Expand 3 time-frames
l 1% time frame l 2" time frame l 3" time frame
A % A % A %
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Regular duplication
with flip-flops from consecutive time-frames connected



Time-Frame Unfolding

0 Expand 3 time-frames

15t time-frame 2 time-frame 3rd time-frame

with initial state propagation and simplification
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Motivation of TFF

[0 In model-based testing of software systems [1, 2],
one may be asked to compute synchronizing,
distinguishing, or homing sequences.

[0 These problems can be formulated as quantified

Boolean formula (QBF) [3, 4] solving of strategy
derivation.

[0 The derived strategy corresponds to a large
(iterative) combinational circuit. However, it

can be alternatively represented more compactly
by a sequential circuit.

[0 How can one reconstruct a sequential circuit from
an iterative combinational circuit?

[1] Sandberg et al., 2005. [2] Kushiket al., 2016. [3] Bieree t al., 2009. [4] Wang et al., 2017.



TFF Formulation

[0 TFF is a reverse operation of TFU

Given: a k-iterative combinational circuit

1..1..1..1 1 2..2..2..2 2 3..3..3..3 3
X1 X2X3Xy Yo XyX;X3X4 Yo oX{X3X3X, y
2" time-frame | 3rd time-frame

_______________________________________

Goal: obtain a sequential circuit that X Y
* is equivalent within bounded k time-frames
« has minimized finite state machine (FSM)

(no assumption is made on the circuit structure except
for the iterative form)
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Extension for General Circuits

O Time-frame folding is a special case of
circuit folding, as it only works for iterative
circuits.

[0 Therefore, we extend the concept of
“folding” for general combinational circuits
to achieve time multiplexing in FPGAs.
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Multi-FPGA System

[0 Multi-FPGA boards are commonly used for
system emulation [5] and prototyping.

[m- - - - mmmmmmm—m-e- system  ¢¥----------------- 1
specification

RTL software
development development

/ multi-FPGA

interconnection prototyping
system

[5] Myaing et al., 2011.
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FPGA 1/0 bottleneck

= Xilinx <+ Altera (1200 I/Os)
Virtex-7
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— I/Os become scarce resources

[6] Hung et al., 2018.
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Time Division Multiplexing (TDM)

[0 The system requires 2 separate clocks.

system clock | | — system operation
/0 clock —> I/0 data transmission
. Q4 az |\ /| as l
« by bs p . b B by 4x #I/0 can be transmitted
2 2 2 2 .
- G4 (3 €1 in 1 system clock
dy ds / /O transmission !
FPGA 1 FPGA 2 l

. , . increase the effective
TDM [7] I/O transmission with ratio 4 1/0 pins of FPGAs

[7] Babb et al., 1993.
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Time Multiplexing Motivation

[0 Instead of increasing the effective I/0
pins, we try to decrease the required
input pin by folding the circuit.
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Time Multiplexing Formulation

] Given a combinational circuit ¢, with n
inputs and m outputs, and a folding
number T, we are asked to fold C, into a
sequential circuit Cs, which

® has n/T inputs and less than m outputs

B after expanding for T time-frames,
becomes functionally equivalent to C,
under proper association of their inputs
and outputs.

16



TIME-FRAME FOLDING
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Recall:
TFF Formulation

[0 TFF is a reverse operation of TFU

Given: a k-iterative combinational circuit

1..1..1..1 1 2..2..2..2 2 3..3..3..3 3
X1 X2X3Xy Yo XyX;X3X4 Yo oX{X3X3X, y
2" time-frame | 3rd time-frame

_______________________________________

Goal: obtain a sequential circuit that X Y
* is equivalent within bounded k time-frames
« has minimized finite state machine (FSM)

(no assumption is made on the circuit structure except
for the iterative form)
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Computation Flow
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2

state
identification

reconstruction

transition

|

State Identification C—

tate minimization |

[0 Functional decomposition [8, 9]
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X,: bound set, X,: free set

[8] Lai et al., 1993. [9] Chang et al., 1996.
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State Identification
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State Identification

[0 State set St reached at t" time-frame
is determined by Yttt yt+2 | yT

aydys cuts under  State
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D——
state transition
identification reconstruction
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[0 St derivation
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state transit
identification | | recons truction

State Identification

0 Partition refinement

P, P, P,

Py

(refinement of P, P,, P3)
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State Identification S—

0 Hyper-function encoding [10]:
E.g. for a multi-output function

F(X) — {fl(X))fZ(X)ifB(X)JfAL(X)}
introduce 4 = {a{,a,} to encode F into
h(X,A) =a; ayf; + ayayf, + a1, f3 + aqayfy

single-output functional decomposition
algorithm can then be applied.



D——
state transition
identification reconstruction

State Identification C——

tate minimization |

0 s27 example revisited
ve r? Hyper-functions
y3
X'y Xx?
SZ
e 0o 0 cut
- i a3 95 4i
S1 derivation S? derivation

27



2
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state transit
identificatio reconstruction

Transition Reconstruction e—. o

ttmmt|

0 Find the transition between state pairs

L1

St—Z St—l St St+1
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state transit
identificatio reconstruction

Transition Reconstruction e—. o

ttmmt|

O For each pair of state (¢;7%,¢q}) in adjacent
2 time-frames:
B Input transition condition:

t _ 1 t—1
(pl,] — HX ,...,X qut 1 /\Tq;f

global — local info. paths to g; through ¢;™*
B QOutput transition response

t 1 t—1 t
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(D———
state transition
identification reconstruction

State Minimization Cu——

ate minimization |

| ]
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‘0.
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010-/1, ]---Il
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MeMin [11]

{q?,91,92,q° 00--/1, 011-/1 {q3, 93,03} 143, 42,45}

[11] Abel et al., 2015.
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State Encoding

[0 Encode each state in the state set Q
with actual bits, 2 schemes are
applied:

B Natural Encoding with [log(|Q])] bits

B One-hot encoding with |Q]| bits, each of
which represents a state in Q.
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CIRCUIT FOLDING
FOR TIME MULTIPLEXING
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Recall:
Time Multiplexing Formulation

] Given a combinational circuit ¢, with n
inputs and m outputs, and a folding
number T, we are asked to fold C, into a
sequential circuit Cs, which

® has n/T inputs and less than m outputs

B after expanding for T time-frames,
becomes functionally equivalent to C,
under proper association of their inputs
and outputs.
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Structural Method

O Illustration outputs
flip-flops

s

intermediate info.
A

time-frame info
A
counter or
shift register

x1 X2 xT  inputs
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Structural Method

0 3-adder example (T = 3)
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Structural Method

0 A little improvement
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Functional Method

0 Computation flow

|

combinational

circuit Cc

]@).
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Functional Method

[0 Pin scheduling heuristic:

Convert the given combinational circuit
into pseudo-iterative form.

B output pin scheduling
B input pin scheduling

41



Functional Method

0 Output pin scheduling

1. sort the outputs according to their support
sizes in an ascending order.

output So S1 S5 Cout

support ag, by |ag, by, ay, by lag, by, a4, by, as, by g, by, aq, by, a,, b,

|support]| 2 4 6 6

ascending order
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Functional Method

0 Output pin scheduling

2. determine the iteration of each output to be

scheduled at.
#input of the folded circuit = 2

output So S1 S5 Cout

support ag, by |ag, by, ay, by lag, by, a4, by, as, by g, by, aq, by, a,, b,

|support]| 2/2 4/2 6/2 6/2

iteration 1 2 3 3
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Functional Method

0 Output pin scheduling
3. null outputs insertion.

iteration 1 2 3
scheduled Sa, null Sq1, null S5, C
outputs 0’ L 2 out
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Functional Method

0 Input pin scheduling
B schedule the inputs according to the outputs.

iteration 1 2 3
scheduled 1 1
OUtpUtS So,nu S, nu S2, Cout
scheduled
inputs ag, by a4, by a,, b,




Functional Method

0 FSM construction & minimization
01/10, 00/00, 01/01, 11/11,
10/10 . ‘ 10/01
MeMin [11] @ 11/01 o
> v 0010 2
{s9 sl 52, 53} {s1, 52,53}

Carry-save adder

[11] Abel et al., 2015.
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EXPERIMENTS
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Setup

O Implemented in C++ within ABC [12] and
used CUDD [13] as the underlying BDD
package.

0 Environment: Intel(R) Core(TM) i7-8700
3.20GHz CPU and 32GB RAM

[0 Benchmark circuits: ISCAS, ITC,
MCNC(LGSynth), LEKO/LEKU, Adder, and
EPFL




TEE - Setup

[0 Benchmark circuits
B Unfolded ISCAS/ITC circuits
B QBF solving of homing sequence [4]

[0 300s timeout limit on FSM construction
and minimization, individually

[4] Wang et al., 2017.
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TFF - Results

0 Number of states

10% 4

H b0y -

b18

B 5499 o

B 5832

B 51494 |

B s15850 Lot

— : #state before minimization ;|

----- : #state after minimization

saturated

20 40 60 80
#time-frame

#state vs. #time-frame.

100
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300 1

E200*

100

50 1

TFF - Results

0 Total runtime

18

150

s1494

s15850

300 1

me(s)

= 150 1
c

100

50 1

runtime vs. #time-frame.

B Time-Fold
B MeMin
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TFF - Results

. #time-frame expanded | natural encoding | one-hot encoding
cireuit saturate | fixed point #gate #EFFE #gate #EFF #gate
b01 9 9 52 5 104 18 52
b02 6 10 4 3 16 8 16
b03 14 14 189 10 8947 | 631 1848
b05 69 133 35173 7 92 69 11
b06 6 7 5H2 4 82 13 45
b07 85 85 13822 7 75 33 54
b08 55 99 5538 10 3395 | 798 1083
b18 50 50 33139 9 2516 | 382 1068
s27 3 ) 29 3 23 ! 42
5298 20 23 838 8 1489 | 135 767
5386 8 9 297 4 117 13 74
s499 22 23 1333 5 71 22 86
5820 12 13 1484 D 276 24 1360
5832 12 13 1390 5 248 24 1245
s1488 23 23 7422 6 492 48 341
51494 23 23 7693 6 523 48 334
515850 5 5 24 4 29 11 24

Results on folding with “fixed points” reached.
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TFF - Results

100000
seq. > comb.
+ ISCAS/ITC
— 10000
3 4 QBF HS
o \seq. < comb.
=] .
GNJ 1000 . . *
i cl e
3 100 .
3 ' ) ’
i) <3
(@) *
Y 10 A *
A
A
1
1 10 100 200 1000 10000 100000

original comb. size (#gate)

Circuit size comparison.
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Structural Method - Setup

Xl I_l NX Applications Products Developers Support About

Spartan-6 LX FPGAs

XC6SLX4 | (eLiBCE XC6SLX16 = XC6SLX25 | XC6SLX45 | XC6SLX75 | XC6SLX100 || XC6SLX150

COMPARE ) Reset € XC6SLX4 L XC6SLX9 XC6SLX16 . XC6SLX25 . XC6SLX45 .

Logic Cells 3,840 9,152 14,579 24,051 43,661

Memory (Kb) 216 576 576 936 2,088

DSP Slices 8 16 32 38 58

3.2 Gb/s Transceivers

Maximum |/0 132 200 232 266 358

impose the input pin count limitation to 200 [14]

[14] https://mwww.xilinx.com/products/silicon-devices/fpga/spartan-6.html#productTable 5 5



Structural Method - Results

100000

10000

1000

folded seq. size (#LUT)

100

10

s: pin scheduling heuristic
f: flip-flop reuse

A
A
A A
vy
A
Al s
A
A Ay
A A
A
a
R A
A
100 1000 10000

original comb. size (#LUT)

'\seq. > comb.
A Y‘eq. < comb.

avg. #LUT
overhead

s simple  46.59%
st 34.84%
st-s 25.08%
st-f 29.14%

A st-sf 20.07%

100000
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Functional Method - Setup

0 11 benchmark circuits, each folded by 4,
8 and 16 time-frames

[0 300s timeout limit on FSM construction
and minimization, individually
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Functional Method - Results

[0 29 out of 33 cases done within time limit
'\seq. > comb.
s st-t16  ast-t8 4 st-t4
1000 * seq. < comb.
e fn-tl6 ¢ fn-t8 o fn-t4 %
= R
= . .
= : . 2
9 . o
2 100 : : /;/*,—
3 oo The functional method achieved
k5 g g 40.40% #LUT reduction and
5 33.47% #FF reduction
- A ° over the structural method
10 " P
10 100 1000

original comb. size (#LUT)
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Comparison of the 2 Methods

Structural Functional

B fast and efficient ® high computational cost
B higher circuit complexity ™ less FF and LUT usage

Is it possible to combine the
advantages of the 2 methods?
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Hybrid Method
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Hybrid Method

By m—e m C7552 could not be folded by the
L 4

l — 1 functional method within timeout
" LY R oo S P .«
— limit.
MO © ¢ M4 1 3 : .
| A £| M The hybrid method achieved
: s l 55.26% and 28.81% reduction
e 1 in flip-flop and LUT usage over
- | ﬁ} the structural method.
;Z/ - —
— original folded
et #Pl | #PO | #gate | #LUT description #in | #out | #FF | #gate | #LUT | overhead method
MO 207 217 330 217 | bus signal controller 104 111 5 506 158 -27.19% | structural
M1 69 35 298 78 34-bit adder 35 18 2 128 33 -57.69% | functional
M2 34 4 168 12 sum parity checker 17 3 2 62 9 -25.00% | functional
M3 69 2 144 40 34-bit comparator 35 2 2 72 26 -35.00% | functional
M4 42 1 195 15 sanity checker 21 1 3 87 13 -13.33% | functional
M5 42 1 195 15 sanity checker 21 1 3 87 13 -13.33% | functional
M6 42 1 195 15 sanity checker 21 1 3 92 14 -6.67% | functional
C7552 || 207 | 108 | 1485 340 overall circuit }8i gj ;; lg‘ig 321 '22"51% safgﬂfs
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CONCLUSIONS
& FUTURE WORK
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Conclusions

[0 We have formulated and provided algorithmic
solutions to
B time-frame folding (TFF)
B time multiplexing in FPGAs

[0 The experimental results demonstrated
B the circuit compaction ability of TFF
B the scalability of the structural method, the optimization
power of the functional method, and the potential of the
hybrid method that can achieve the advantages of the 2
[0 The proposed methods can be applied to
B sequential synthesis of bounded strategies
B alleviate the I/O-pin bottleneck of FPGASs

B various tasks in logic synthesis
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Future Work

0 We would like to fully automate the hybrid folding
method. In the case study we conducted, we
relied on the given high-level hierarchical design
and manually partitioned the circuit into smaller
modules. Therefore, it would be more desirable if
the partitioning could be done automatically from
a flattened gate-level logic netlist.

0 In addition, we would like to investigate other
functional decomposition techniques to help
mitigate the high computational cost of BDD-
based operations.
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THE END

65



