
Circuit Folding:
From Combinational
to Sequential Circuits

Presenter: Po-Chun Chien

Advisor: Jie-Hong Roland Jiang

ALCom Lab
Graduate Institute of Electronics Engineering

Department of Electrical Engineering
National Taiwan University

Outline

 Introduction

 Time-frame Folding (TFF)

 state identification & transition reconstruction

 Time Multiplexing via Circuit Folding

 structural method

 functional method based on TFF

 Experiments

 TFF for circuit compaction

 structural vs. functional method

 Conclusions & Future Work

2

INTRODUCTION

3

 Circuit folding is a process of transforming a
combinational circuit 𝐶𝑐 into a sequential circuit 𝐶𝑆,
which after time-frame expansion, is functionally
equivalent to 𝐶𝑐.

Circuit Folding Illustration

fold
combinational

s
e
q
u
e
n
ti
a
l

outputs

inputs

reuse
logic

reduce
#input

4

Time-Frame Unfolding

 TFU, or time-frame expansion

 A technique often used in ATPG, BMC

5

 An example sequential circuit

Sequential circuit s27

Time-Frame Unfolding

6

 Expand 3 time-frames

Regular duplication

with flip-flops from consecutive time-frames connected

Time-Frame Unfolding

7

with initial state propagation and simplification

𝑦1 = 𝑓 𝑋1 𝑦2 = 𝑔 𝑋1, 𝑋2 𝑦3 = ℎ 𝑋1, 𝑋2, 𝑋3

𝑋1 𝑋2 𝑋3

Iterative form
Can we reverse it?

Time-Frame Unfolding

 Expand 3 time-frames

8

Motivation of TFF

 In model-based testing of software systems [1, 2],
one may be asked to compute synchronizing,
distinguishing, or homing sequences.

 These problems can be formulated as quantified
Boolean formula (QBF) [3, 4] solving of strategy
derivation.

 The derived strategy corresponds to a large
(iterative) combinational circuit. However, it
can be alternatively represented more compactly
by a sequential circuit.

 How can one reconstruct a sequential circuit from
an iterative combinational circuit?

[1] Sandberg et al., 2005. [2] Kushiket al., 2016. [3] Bieree t al., 2009. [4] Wang et al., 2017.

9

TFF Formulation

 TFF is a reverse operation of TFU

Given: a k-iterative combinational circuit

Goal: obtain a sequential circuit that
• is equivalent within bounded k time-frames
• has minimized finite state machine (FSM)

(no assumption is made on the circuit structure except
for the iterative form)

10

Extension for General Circuits

 Time-frame folding is a special case of
circuit folding, as it only works for iterative
circuits.

 Therefore, we extend the concept of
“folding” for general combinational circuits
to achieve time multiplexing in FPGAs.

11

Multi-FPGA System

 Multi-FPGA boards are commonly used for
system emulation [5] and prototyping.

[5] Myaing et al., 2011.

system
specification

RTL
development

software
development

FPGA1 FPGA2

FPGA3 FPGA4

multi-FPGA
prototyping

system

interconnection

12

FPGA I/O bottleneck

→ I/Os become scarce resources

ratio of FPGA logic capacity over I/Os [6]

[6] Hung et al., 2018.

13

Time Division Multiplexing (TDM)

 The system requires 2 separate clocks.

TDM [7] I/O transmission with ratio 4

[7] Babb et al., 1993.

I/O data transmission

system operation

4x #I/O can be transmitted
in 1 system clock

increase the effective
I/O pins of FPGAs

14

Time Multiplexing Motivation

 Instead of increasing the effective I/O
pins, we try to decrease the required
input pin by folding the circuit.

combinational
fold

combinational

s
e
q
u
e
n
ti
a
l

outputs

inputs

reduce
#input

15

Time Multiplexing Formulation

 Given a combinational circuit 𝐶𝑐 with 𝑛
inputs and 𝑚 outputs, and a folding
number 𝑇, we are asked to fold 𝐶𝑐 into a
sequential circuit 𝐶𝑆, which

 has 𝒏/𝑻 inputs and less than 𝑚 outputs

 after expanding for 𝑇 time-frames,
becomes functionally equivalent to 𝐶𝑐
under proper association of their inputs
and outputs.

16

TIME-FRAME FOLDING

17

Recall:

TFF Formulation

 TFF is a reverse operation of TFU

Given: a k-iterative combinational circuit

Goal: obtain a sequential circuit that
• is equivalent within bounded k time-frames
• has minimized finite state machine (FSM)

(no assumption is made on the circuit structure except
for the iterative form)

18

Computation Flow

19

State Identification

 Functional decomposition [8, 9]

𝑋𝜆: bound set, 𝑋𝜇: free set

[8] Lai et al., 1993. [9] Chang et al., 1996.

21

State Identification

 BDD-based decomposition

3 equivalence classes

𝑥2
1𝑥4

1, 𝑥1
1 𝑥2

1𝑥3
1 + 𝑥2

1 𝑥4
1 , 𝑥1

1 𝑥2
1 + 𝑥4

1 + 𝑥1
1𝑥2

1𝑥3
1

forming a partition on 𝔹 𝑋1

0000
0001
0010
0011

-0
-1

0
1
1
-

0
0
-0

1
1
--

1
0
-0

0
1
0
-

0
0
0
0

1
0
1
0

1
1
1
1

1
0
1
0

1
1
1
1

1
1
1
1

𝑥1
2𝑥2

2𝑥3
2𝑥4

2

𝑥 1
1
𝑥
21
𝑥
31
𝑥
41

… … ……

free

b
o
u
n
d

D
e
c
o
m

p
o
s
it
io

n
 c

h
a
rt

column
patterns

22

𝑋2

𝑋3

𝑋4

𝑋1

𝑆2

𝑆3

…

State
set

𝑆1

𝑦1
3𝑦2

3𝑦3
3

𝑦1
4𝑦2

4𝑦3
4

𝑦1
2𝑦2

2𝑦3
2

𝑌3 𝑌4𝑌2

State Identification

 State set 𝑆𝑡 reached at 𝑡𝑡ℎ time-frame
is determined by 𝑌𝑡+1, 𝑌𝑡+2, … , 𝑌𝑇

cuts under
consideration

23

time-frame

index

State Identification

 𝑆𝑡 derivation

𝑋𝑡+1, 𝑋𝑡+2

𝑋1, … , 𝑋𝑡

𝑦1
𝑡+2𝑦1

𝑡+1

𝑋𝑡+1

𝑋1, … , 𝑋𝑡

𝑋𝑡+1, 𝑋𝑡+2

𝑋1, … , 𝑋𝑡

𝑦1
𝑡+2𝑦1

𝑡+1

𝑋𝑡+1

𝑋1, … , 𝑋𝑡

different partitions

on 𝔹 X1,…,Xt

24

State Identification

 Partition refinement

𝑃1 𝑃2

𝑃4
(refinement of 𝑃1, 𝑃2, 𝑃3)

𝑃3

a cell

25

State Identification

 Hyper-function encoding [10]:
E.g. for a multi-output function

𝐹 𝑋 = 𝑓1 𝑋 , 𝑓2 𝑋 , 𝑓3 𝑋 , 𝑓4 𝑋

introduce 𝐴 = 𝛼1, 𝛼2 to encode 𝐹 into

ℎ 𝑋, 𝐴 = 𝛼1 𝛼2𝑓1 + 𝛼1𝛼2𝑓2 + 𝛼1𝛼2𝑓3 + 𝛼1𝛼2𝑓4

single-output functional decomposition

algorithm can then be applied.

[10] Jiang et al., 1998.
26

State Identification

 s27 example revisited

𝑆1 derivation 𝑆2 derivation

Hyper-functions

27

State Identification

 Transition condition 𝜏𝑞𝑗
𝑡 of state 𝑞𝑗

𝑡

ℎ𝑦𝑝𝑒𝑟-𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌𝑡+1, … , 𝑌𝑇

…

𝑋1, 𝑋2…𝑋𝑡

𝑋𝑡+1…𝑋𝑇

𝛼1… 𝛼𝑘

𝑞𝑗
𝑡

1 0 0

𝜏𝑞𝑗
𝑡 𝑋1, 𝑋2…𝑋𝑡 :

collection of paths
starting from 𝑞1

0

leading to 𝑞𝑗
𝑡

initial
state 𝑞1

0

state set 𝑆𝑡

28

Transition Reconstruction

 Find the transition between state pairs

𝑞1
𝑡+1

𝑆𝑡+1

…

𝑞𝑖
𝑡−1

𝑞1
𝑡−1

𝑞1
𝑡−1

𝑆𝑡−1

…
…

𝑞𝑗
𝑡

𝑞1
𝑡

𝑞1
𝑡

𝑆𝑡

…
…

𝑞1
𝑡−2

𝑆𝑡−2

…

?
……

29

paths to 𝑞𝑗
𝑡 through 𝑞𝑖

𝑡−1

Transition Reconstruction

 For each pair of state 𝑞𝑖
𝑡−1, 𝑞𝑗

𝑡 in adjacent

2 time-frames:

 Input transition condition:

𝜑𝑖,𝑗
𝑡 = ∃𝑋1, … , 𝑋𝑡−1. 𝜏𝑞𝑖

𝑡−1 ∧ 𝜏𝑞𝑗
𝑡

 Output transition response

𝜓𝑖,𝑘
𝑡 = ∃𝑋1, … , 𝑋𝑡−1. 𝜏𝑞𝑖

𝑡 ∧ 𝑦𝑘
𝑡

global → local info.

30

State Minimization

 s27 example revisited

MeMin [11]

Don’t care
state

[11] Abel et al., 2015.

31

State Encoding

 Encode each state in the state set 𝑄
with actual bits, 2 schemes are
applied:

 Natural Encoding with log 𝑄 bits

 One-hot encoding with 𝑄 bits, each of
which represents a state in Q.

32

CIRCUIT FOLDING
FOR TIME MULTIPLEXING

33

Recall:

Time Multiplexing Formulation

 Given a combinational circuit 𝐶𝑐 with 𝑛
inputs and 𝑚 outputs, and a folding
number 𝑇, we are asked to fold 𝐶𝑐 into a
sequential circuit 𝐶𝑆, which

 has 𝒏/𝑻 inputs and less than 𝑚 outputs

 after expanding for 𝑇 time-frames,
becomes functionally equivalent to 𝐶𝑐
under proper association of their inputs
and outputs.

34

Structural Method

 Illustration

𝑋𝑇

…
inputs

outputs
flip-flops

co
u

n
te

r
o

r
sh

if
t

re
gi

st
er

ti
m

e-
fr

am
e

in
fo

.

…

in
te

rm
ed

ia
te

 in
fo

.

𝑋2𝑋1

36

in
term

ed
iate in

fo
.

Structural Method

 3-adder example (𝑇 = 3)

𝑔5

𝑔6

𝑔7

𝑔4

𝑔8

𝑠1

𝑎1

𝑏1

𝑔12

𝑔9

𝑔13

𝑔11

𝑔14

𝑠2

𝑐𝑜𝑢𝑡

𝑎2

𝑏2

𝑔1

𝑔2

𝑠0

𝑏0

𝑎0

FFs

tim
e in

fo
.

37

Structural Method

 A little improvement

𝑔5

𝑔6

𝑔7

𝑔4

𝑔8

𝑠1

𝑎1

𝑏1

𝑔12

𝑔9

𝑔13

𝑔11

𝑔14

𝑠2

𝑐𝑜𝑢𝑡

𝑎2

𝑏2

𝑔1

𝑔2

𝑠0

𝑏0

𝑎0

FFs

tim
e in

fo
.

reuse
the FF

38

Functional Method

 Computation flow

40

Functional Method

 Pin scheduling heuristic:

Convert the given combinational circuit
into pseudo-iterative form.

 output pin scheduling

 input pin scheduling

41

Functional Method

 Output pin scheduling

1. sort the outputs according to their support
sizes in an ascending order.

output 𝑠0 𝑠1 𝑠2 𝑐𝑜𝑢𝑡

support 𝑎0, 𝑏0 𝑎0, 𝑏0, 𝑎1, 𝑏1 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2

|support| 2 4 6 6

ascending order

42

output 𝑠0 𝑠1 𝑠2 𝑐𝑜𝑢𝑡

support 𝑎0, 𝑏0 𝑎0, 𝑏0, 𝑎1, 𝑏1 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2

|support| 2 4 6 6

output 𝑠0 𝑠1 𝑠2 𝑐𝑜𝑢𝑡

support 𝑎0, 𝑏0 𝑎0, 𝑏0, 𝑎1, 𝑏1 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2

|support| 2 4 6 6

iteration 1 2 3 3

Functional Method

 Output pin scheduling

2. determine the iteration of each output to be
scheduled at.

#input of the folded circuit = 2

/ 2 / 2 / 2/ 2

43

Functional Method

 Output pin scheduling

3. null outputs insertion.

iteration 1 2 3

scheduled
outputs

𝑠0, 𝑛𝑢𝑙𝑙 𝑠1, 𝑛𝑢𝑙𝑙 𝑠2, 𝑐𝑜𝑢𝑡

44

Functional Method

 Input pin scheduling

 schedule the inputs according to the outputs.

iteration 1 2 3

scheduled
outputs

𝑠0, 𝑛𝑢𝑙𝑙 𝑠1, 𝑛𝑢𝑙𝑙 𝑠2, 𝑐𝑜𝑢𝑡

scheduled
inputs

𝑎0, 𝑏0 𝑎1, 𝑏1 𝑎2, 𝑏2

45

Functional Method

 FSM construction & minimization

MeMin [11]

[11] Abel et al., 2015.

Carry-save adder

47

EXPERIMENTS

48

Setup

 Implemented in C++ within ABC [12] and
used CUDD [13] as the underlying BDD
package.

 Environment: Intel(R) Core(TM) i7-8700
3.20GHz CPU and 32GB RAM

 Benchmark circuits: ISCAS, ITC,
MCNC(LGSynth), LEKO/LEKU, Adder, and
EPFL

[12] Brayton et al., 2010. [13] Somenzi et al., 2005.
49

TFF - Setup

 Benchmark circuits

 Unfolded ISCAS/ITC circuits

 QBF solving of homing sequence [4]

 300s timeout limit on FSM construction
and minimization, individually

[4] Wang et al., 2017.
50

TFF - Results

#state vs. #time-frame.

: #state before minimization
: #state after minimization

saturated

 Number of states

b07

b18

s499
s832

s1494

s15850

51

TFF - Results

 Total runtime

runtime vs. #time-frame.
Time-Fold
MeMin

s1494b18 s15850

52

TFF - Results

Results on folding with “fixed points” reached.

53

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

fo
ld

e
d

 s
e

q
. s

iz
e

(#
ga

te
)

original comb. size (#gate)

ISCAS/ITC

QBF HS

TFF - Results

Circuit size comparison.

seq. < comb.

seq. > comb.

200

54

Structural Method - Setup

impose the input pin count limitation to 200 [14]

[14] https://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html#productTable
55

Structural Method - Results

10

100

1000

10000

100000

10 100 1000 10000 100000

fo
ld

e
d

 s
e

q
. s

iz
e

(#
LU

T)

original comb. size (#LUT)

simple

st

st-s

st-f

st-sf

seq. < comb.

seq. > comb.

avg. #LUT
overhead

46.59%

34.84%

25.08%

29.14%

20.07%

s: pin scheduling heuristic
f: flip-flop reuse

56

Functional Method - Setup

 11 benchmark circuits, each folded by 4,
8 and 16 time-frames

 300s timeout limit on FSM construction
and minimization, individually

57

 29 out of 33 cases done within time limit

Functional Method - Results

10

100

1000

10 100 1000

fo
ld

ed
 s

eq
. s

iz
e

(#
LU

T)

original comb. size (#LUT)

st-t16 st-t8 st-t4

fn-t16 fn-t8 fn-t4
seq. < comb.

seq. > comb.

The functional method achieved
40.40% #LUT reduction and
33.47% #FF reduction
over the structural method

58

Comparison of the 2 Methods

Structural

 fast and efficient

 higher circuit complexity

Functional

 high computational cost

 less FF and LUT usage

Is it possible to combine the
advantages of the 2 methods?

59

Hybrid Method

 A case study on C7552

hierarchical structure of C7552
60

Hybrid Method

 C7552 could not be folded by the
functional method within timeout
limit.

 The hybrid method achieved
55.26% and 28.81% reduction
in flip-flop and LUT usage over
the structural method.

61

CONCLUSIONS
& FUTURE WORK

62

Conclusions

We have formulated and provided algorithmic
solutions to

 time-frame folding (TFF)

 time multiplexing in FPGAs

 The experimental results demonstrated

 the circuit compaction ability of TFF

 the scalability of the structural method, the optimization
power of the functional method, and the potential of the
hybrid method that can achieve the advantages of the 2

 The proposed methods can be applied to

 sequential synthesis of bounded strategies

 alleviate the I/O-pin bottleneck of FPGAs

 various tasks in logic synthesis

63

Future Work

We would like to fully automate the hybrid folding
method. In the case study we conducted, we
relied on the given high-level hierarchical design
and manually partitioned the circuit into smaller
modules. Therefore, it would be more desirable if
the partitioning could be done automatically from
a flattened gate-level logic netlist.

 In addition, we would like to investigate other
functional decomposition techniques to help
mitigate the high computational cost of BDD-
based operations.

64

THE END

65

