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Abstract

In the thesis, we formulate time-frame folding (TFF') as the reverse operation of time-
frame expansion in automatic test pattern generation (ATPG) and (un)bounded
model checking. While the latter converts a sequential circuit into a combinational
one for some expansion bound of k time-frames, the former attempts the opposite,
which can be highly non-trivial as the subcircuit of each time-frame can be distinct.
TFF arises naturally in the context of testbench generation and bounded strategy
generalization. We propose an algorithm that finds a minimum-state finite state
machine consistent with the input-output behavior of the combinational circuit un-
der folding. Furthermore, we extend TFF as functional circuit folding and introduce
structural circuit folding. Through the two folding methods, we formulate a new
approach at the logic level to achieve time multiplexing, which is an important
technique to overcome the bandwidth bottleneck of limited input-output pins in
FPGAs. Most prior work tackles the problem of time multiplexing from a physical
design standpoint to minimize the number of cut nets or Time Division Multiplexing
(TDM) ratio through circuit partitioning or routing. Our formulation is orthogo-

nal to the previous ones and provides a smooth trade-off between bandwidth and

IThis thesis is the extension research published in [11}/12]
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throughput. Empirical evaluation of TFF demonstrates its ability in circuit size
compaction. Experiments also show the effectiveness of the structural method and

improved optimality of the functional method on look-up-table and flip-flop usage.

Keywords: circuit folding, functional decomposition, pin-count reduction, state

minimization, time-frame expansion, time-frame folding, time multiplexing

doi:10.6342/NTU202001058



Contents

[ Verification T r he Oral E — C . | ;
[ Acknowledgements| ii
[ Chinese Abstractl iii
[_Abstractl iv
[ List of Figures| ix
[__List of Tables| xi
(1__Introductionl 1
(1.1 Time-frame Folding| . . . . . . .. .. ... ... ... ... .. .... 2
(1.2 Time Multiplexingl . . . . . .. .. ... ... ... ... ... 3
(L3 Our Contributionsl . . . . . . . . .. ... . ... 6
(1.4 Thesis Organization|. . . . . . . . . . . .. ... ... ... ...... 7
2 Prelinm = 8
2.1 Finite State Machinel . . . . . . .. ..o 9
2.2 Combinational Circuit] . . . . . . . . . . ... ... L. 9
2.3 Sequential Circuit|. . . . . . . . ... ... oL 9
vi

doi:10.6342/NTU202001058



Contents

2.4 Time-frame Expansion| . . . . . . ... ..o 10
[2.5 Functional Decomposition| . . . . . . ... ... ... ... 11

[3 Time-frame Folding] 15
(3.1 Problem Formulationl . . . . . .. . ... ... . 0oL 15
[3.2 Algorithm| . . . . . .. .. ... .. 16
[3.2.1 State Identification via Functional Decomposition . . . . . . . 17

[3.2.2  Transition Reconstructionl . . . . . ... ... ... ... ... 19

[3.2.3  State Minimization| . . . . . . . .. ..o 21

[3.2.4  State Encoding . . . . ... Lo 23

[3.3 Implementation Issues| . . . . . . . . . ... ... ... 23

[4  Circuit Folding for Time Multiplexing] 25
4.1 Problem Formulationl . . . . . . . ... ... ... L 25
[4.2  Structural Circuit Foldingl . . . . .. ... ... ... ... ... ... 26
[4.3  Functional Circuit Foldingl . . . . . .. ... ... ... ... .. ... 29
[4.3.1  Pin Scheduling and [terative Circuit Conversion| . . . . . . . . 29

[4.3.2  FSM Construction via Time-Frame Folding|. . . . . . . .. .. 32

433 FSM Minimizationl . . . . .. . ... oo 33

[4.3.4 FSM Encodingl . . . . .. ... oo 33

[>  Experiments| 35
[>.1  Time-frame Folding/ . . . . . . ... ... ... 35
B.1.1  Fixed Point after TFEl . . . 0o 000000000 38

[5.1.2  Circuit Size Compaction| . . . . . . . . . ... ... ... ... 41

[5.2  Time Multiplexing via Circuit Foldingl . . . . .. ... ... ... .. 42

vii

doi:10.6342/NTU202001058



Contents

[5.2.1  Structural Folding on Large Circuits| . . . . . . . . .. .. .. 44

[5.2.2  Comparing Structural and Functional Folding| . . . . . .. .. 48

[5.2.3  Case Study of Combining Structural and Functional Foldingl . 52

6 Conclusions and Future Workl 56
6.1 Conclusionsl . . . . . . . . 56
6.2 Future Workl. . . . . . o 57

|  Bibliographyi 59

viii

doi:10.6342/NTU202001058



List of Figures

(1.1 Time-frame expansion vs. folding|. . . . . . .. .. ... ... .. .. 2
(1.2 An illustration of multi-FPGA prototyping system.| . . . . . . .. .. 4
(1.3  The ratio FPGA logic capacity over 1/Os (retrieved from [32]).|. . . . 4
(I.4 TDM I/O transmission with ratio4.| . . . . . . ... ... ... ... 5
[2.1 Sequential circuit s27. . . .. . ..o 11
2.2 Time-frame expanded circuit of s27.| . . . . . . ... ... ... ... 12
[2.3  Effect of functional decomposition.| . . . . . .. ... ... ... ... 13
2.4 BDD-based functional decomposition.|. . . . . . . . . ... ... ... 14
[3.1 Computation flow of time-frame folding.| . . . . . .. ... ... ... 16
(3.2 State identification. . . . . . . . ..o oL 19
[3.3 State transition graphs of FSMs|. . . . . .. ... ..o 22
[4.1 Illustration of structural circuit folding.|. . . . . . . ... ... .. .. 27
4.2  Example of 3-bit adder (3-adder) circuit under folding,|. . . . . . . . 28
[4.3  Computation flow of functional circuit folding| . . . . . . . . . . . .. 30
[4.4  FSM by functional circuit folding of 3-adder.| . . . . . . . . ... .. 34
[b.1 H#state vs. #time-frame.| . . . . . . ..o 39
ix

doi:10.6342/NTU202001058



List of Figures

[>.2  Total runtime vs. #time-frame.| . . . . . . . . ... ..o . 40

b3 Circuit size atter TEFES . . . . .00 o000 o000 43

(.4 Circuit size after structural folding.| . . . . . . . . . . ... ... 48

[5.5  Circuit size comparison between structural and functional folding.| . . 51

5.6 Hierarchical structure of C7552. . . . . . . .. ... ... ... .. .. 53
X

doi:10.6342/NTU202001058



List of Tables

0.1 Results of TFF on ISCAS and I'TC benchmarks) . . . . ... ... .. 37
[5.2  Results of time-frame folding on homing sequence benchmarks.|. . . . 38
[5.3  Results on folding with fixed point.| . . . . . . . ... ... ... ... 41
b4 Benchmark statistics) . . . . . .. ..o oo 43
[5.5 Results of structural circuit folding.| . . . . . . .. ... ... ... .. 47
[.6  Comparison between structural and functional methods| . . . . . .. 50
[5.7 Results of tolding adders.|. . . . . . . ... ... ... . ... 55
[5.8 Results of folding voters.| . . . . . . . .. ... ... ... 55

[5.9  Results of folding C7552 with the structural and functional methods |

combined. . . ... 55

X1

doi:10.6342/NTU202001058



Chapter 1

Introduction

Circuit folding is a process of transforming a combinational circuit C¢ into a sequen-
tial circuit Cg, which after time-frame expansion, becomes functionally equivalent to
Cc. The computation of the combinational circuit is folded into multiple iterations
of the resulting sequential circuit. With such folding process, one can reduce the /0O
pint count of the circuit and potentially lower the overall complexity. Circuit fold-
ing finds its applications testbench generation and time multiplexing in multi-FPGA
systems, which are crucial to the field of logic synthesis, and yet remains relatively
unstudied. In this chapter, we introduce the motivation and the application field
of the thesis in Section [I.1] and highlight our contributions in Section [I.3] and

provide the overall thesis structure in Section [1.4]
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1.1. Time-frame Folding

X Y X! Yyl Xx? Y?
I—) Comb. J expansion L j L J
logic , < Comb. Comb.
Z : Z folding —>! logic logic +—
Flip-flops 70 71 72

Figure 1.1: Time-frame expansion vs. folding.

1.1 Time-frame Folding

Time-frame folding (TFF) is the reverse operation of time-frame unfolding (TFU), or
time-frame expansion as illustrated in Figure [I.I] While TFU is a well-known tech-
nique commonly used in, e.g., automatic test pattern generation (ATPG) [36] and
(un)bounded model checking of sequential circuits [5|, TFF remains largely unstud-
ied. In fact, TFF finds its natural applications. For example, to test a sequential
design, one may look for a testbench that produces some set of desired test pat-
terns of length-bounded input-output sequences. The testbench can be represented
directly by a large combinational circuit, corresponding to a time-frame expanded
version of a sequential circuit, or represented more compactly by a sequential circuit.
For another example, in model-based testing of software systems [19,130], in state
identification [21], and in system initialization |28|, one may be asked to compute
(non-adaptive or adaptive) homing, distinguishing, and/or synchronizing sequences.
These problems can be formulated as quantified Boolean formula (QBF) [6] solving
of strategy derivation, e.g., in [35], that computes the intended sequence. Again,
the homing, distinguishing, or other strategies under synthesis can be represented

directly by a large combinational circuit or more compactly by a sequential circuit.
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1.2. Time Multiplexing

However, unlike the straightforward derivation of TFU from a given sequential
circuit, TFF can be highly non-trivial because the time-frame expanded combina-
tional circuit may not exhibit a common circuit structure shared among different
time-frames. Perhaps it is this difficulty that makes TFF largely unaddressed. In
this work, we formulate the TFF problem and provides a general solution that makes

no structure assumption on the combination circuit under time-frame folding.

To the best of our knowledge, this work is the first to address the time-frame fold-
ing issue. Most related prior work on time-frame issues centered around unfolding,
e.g. in [24]. While the prior work converts a sequential circuit into a combina-
tional one with respect to some expansion bound k time-frames, our attempt is the
opposite. Regarding our method, we rely on multiple-output functional decompo-
sition 18| to identify equivalent states as part of our computation flow. A similar

technique has been applied in sequential equivalence checking [17].

1.2 Time Multiplexing

The concept of folding is then further extended for general combinational circuits to
tackle the time multiplexing problem in FPGAs. Multi-FPGA boards are commonly
used for system emulation |25] and prototyping as illustrated in Figure . As the
logic capacity, i.e., the number of look-up-tables (LUTs), of an FPGA increases
with new technology nodes, the growth in I/O pin count remains relatively slow.
The ratio of FPGA logic capacity over 1/O over the past few years is plotted in
Figure[1.3] This unbalance growth rate makes the number of available I/O pins for

each FPGA relatively small compared to the number of required inter-chip signals,

3 doi:10.6342/NTU202001058



1.2. Time Multiplexing
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Figure 1.2: An illustration of multi-FPGA prototyping system.
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Figure 1.3: The ratio FPGA logic capacity over 1/Os (retrieved from )

which leads to a significant underutilization of logic resources ,.

To overcome the bottleneck of limited inter-chip I/O bandwidth, time division
multiplexing (TDM) 4] was proposed, where physical pins and wires are multiplexed
among multiple signals, increasing the effective number of available logic pins. Under
this scheme, the system requires two separate clocks, a system clock, on which
the FPGAs operate, and a faster I/O clock, on which the inter-chip signals are

propagated. The ratio of the system clock to the I/O clock is called the TDM ratio 7.

1 doi:10.6342/NTU202001058



1.2. Time Multiplexing

system clock

pu—
|

1/0 clock
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Figure 1.4: TDM I/O transmission with ratio 4.

Essentially, r times the I/O bandwidth of signals can be transmitted during a system
clock. Figure illustrates an example of I/O transmission between two FPGAs
with TDM ratio 4. The TDM technique dramatically increases the capability of
multi-FPGA systems. However, it reduces the system throughput as the system
clock is operating at a lower frequency. Most of the related work, e.g., |9], viewed
this problem from a physical design standpoint and tried to minimize the number
of cut nets, which corresponds to the number of inter-chip signals, passing through
cach FPGA. Another line of research, e.g., [22,33|, considers scheduling and temporal
partitioning for time-multiplexed FPGAs. They partitioned a combinational circuit
into several pipeline stages for time multiplexing. However, the approach cannot
control the pin-count reduction as it is determined by the circuit structure. In
[15,23], the problem of pin assignment during pin multiplexing, which is the mapping
between logic inputs and outputs to the physical pins, was investigated. The pin-

count reduction issue was not addressed.

In this work, we formulate a new orthogonal approach to achieve time multiplex-

ing at the logic level. The proposed structural and functional methods can directly

doi:10.6342/NTU202001058



1.3. Our Contributions

reduce the number of input pins of a logic circuit as desired by folding the computa-
tion of the circuit. The resulting circuit will satisfy the input pin count constraint at
the cost of additional flip-flops storing required information and additional control
circuitry for intended computation. This new approach does not require dynamic re-
configuration of the FPGA, unlike [22,33|. Neither does it require an additional I/O
clock as TDM, the I/O transmission can work in synchronization with the system

clock.

In the literature, the term “folding” is used elsewhere. In [27], a folding trans-
formation technique was proposed to schedule and bind a data-flow graph onto
a hardware architecture, where folding refers to the process of executing multiple
algorithmic operations in a hardware unit. In [14], a folding technique was pro-
posed to identify structurally identical subcircuits to share gate implementation
using dual-edge-triggered flip-flops for time multiplexing. Their primary objective
was to minimize the circuit area after technology mapping, while ours is to reduce

the input pin count.

1.3 Owur Contributions

This thesis is the extension research published in [11,/12]. The main results of this

work include:

1. We motivate and formulate the problem of time-frame folding, and propose an
algorithm that finds a minimum-state finite state machine consistent with the

input-output behavior of the combinational circuit under folding.

0 doi:10.6342/NTU202001058



1.4. Thesis Organization

2. We formulating a new time multiplexing scheme, and propose the structural and
functional circuit folding methods, that convert a combinational circuit into a
sequential one with equivalent input-output behavior modulo time-frame expan-

sion.

3. We evaluate the proposed TFF algorithm and show the computational viability
and its ability in circuit size compaction for potential use in different application
domains. We conduct experiments on the proposed structural and functional
folding methods, and demonstrate their effectiveness in input pin reduction to

alleviate the 1/O pin bottleneck of FPGAs.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2| provides the essential prelim-
inaries. In Chapter [3| we formulate the problem of time-frame folding and present
our algorithmic solution. The problem of time multiplexing is then formulated in
Chapter [ along with the details of the proposed structural and functional methods.
Chapter [f] evaluates the experimental results, and finally Section [6] concludes this

thesis.

doi:10.6342/NTU202001058



Chapter 2

Preliminaries

In the sequel, sets are denoted by upper-case letters, e.g. S; the elements in a set
are in lower-case letters, e.g. a € S5; the cardinality of a set S is denoted as |S|. A
partition P of a set S into non-empty subsets S; C S, for i = 1,...,k, is denoted
by P = {51]Ss]...|Sk}, where S; N S; = 0,Vi # j and |J;S; = S. BEach S, is a
called a cell of P. Let P and P’ be two partitions of a set S. Partition P is said
to be a refinement of P', if s;,s; € S are in different cells of P’, then s;,s; € S
are in different cells of P. Note that the refinement relation is not symmetric, i.e.,
that P is a refinement of P’ does not imply that P’ is a refinement of P. For a
set of Boolean variables X, its set of truth assignments is denoted by [X], e.g.,
[X] = {(0,0),(0,1),(1,0), (1,1)} for X = {1, 22}. Boolean negation, conjuction,

and disjunction are denoted by — or overline, A or -, and V or 4+, respectively.

doi:10.6342/NTU202001058



2.1. Finite State Machine

2.1 Finite State Machine

A finite state machine (FSM) can be described by a six-tuple (I, O, @, ¢, A, Q),
where I is the input alphabet, O is the output alphabet, ) # () is a non-empty
finite set of states, ¢; € @) is the initial state, A : Q x I — (@) is the state transition
function, €2 : Q x I — O is the output function. A machine is completely specified
if, for every state in ) under every input, its output and next state are defined;
otherwise, it is incompletely specified. An FSM can be alternatively represented as

a state transition graph.

2.2 Combinational Circuit

A combinational circuit C¢ is a directed acyclic graph with vertices V' and edges
E CV x V. Two subsets I,O C V are identified as the primary inputs (PIs) and
outputs (POs), respectively. For (u,v) € E, we call u is a fanin of v, and v is a
fanout of u. Each vertex v € V' is associated with a Boolean variable and with a
Boolean function expressed in terms of its fanin variables. The support set of v is

the set of Pls that can reach v through a path consisting of edges in F.

2.3 Sequential Circuit

A sequential circuit Cg is a combinational circuit augmented with state-holding

elements (flip-flops), each of which takes an output of the combinational circuit as

doi:10.6342/NTU202001058



2.4. Time-frame Expansion

its input and produces an output to an input of the combinational circuit. An
FSM can be implemented by a sequential circuit, which consists of combinational
logic netlists realizing the transition and output functions of the FSM and flip-flops

holding current state values.

2.4 Time-frame Expansion

The operation of a sequential circuit can be seen as an iterative combinational circuit
that repeats the same computation but taking timestamped inputs. In time-frame
expansion /unfolding, a sequential circuit is unrolled to construct an iterative com-
binational circuit. This is done by cascading duplicated sequential circuits, where
the input and output of the flip-flops in the adjacent time-frames are connected
together. In this paper, the initial values of the flip-flops (initial state) is constant-
propagated throughout the time-frames. Therefore, after expansion, the primary
output functions of each time-frame in the expanded circuit can be viewed as a
purely combinational logic which depends on the primary inputs of all the previous

time-frames.

Example 2.1 Figure [2.1] shows the circuit structure of s27, where x; denotes the
i primary input variable, y denotes the primary output variable, and z; and 2/
denote the current- and next-state variables, respectively, of the i** flip-flop. Let v*
denote the variable v instantiated at the ¢ time-frame. Figure shows the
circuit of s27 after three time-frames of expansion, and Figure shows the
same circuit after simplification with constant propagation of the initial state values

(29,29, 29) = (0,0,0). Note that after the time-frame expansion all primary output

10 doi:10.6342/NTU202001058



2.5. Functional Decomposition

Comb.
X1 Logic
X2
X3 y
X4

A v _«q
—>

— 1 —1)

Z z!
1 Memory “1
Z2 22

Elements 7
Z3

Figure 2.1: Sequential circuit s27.

functions are purely combinational, and after further circuit simplification the state
transition functions cannot be clearly identified. In the following, the timestamp of
the input/output of an iterative circuit is denoted by superscript letters. E.g., for a
sequential circuit with input x and output y, the timestamped input and output of

the iterative circuit is denoted as ', ..., z% and 9, ..., 4, respectively.

2.5 Functional Decomposition

Given a single-output Boolean function f(X), the functional decomposition |[3,129]
problem asks to re-express f(X) = f.(X,, fa, (Xa), ..., £, (X)), where X, and X,
are called the bound set and free set variables, respectively, which form a partition
on X = {X,|X,}[] Let F\(X)) = {/\, (X)), ..., /1, (X))} To avoid trivial decom-
position, it is required that |Fy| < |X,|. Figure illustrates the structural effect

of functional decomposition.

In time-frame folding application, only disjoint decomposition, i.e., X N X,, = 0, needs to be
considered.

1 doi:10.6342/NTU202001058



2.5. Functional Decomposition
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2.5. Functional Decomposition
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Figure 2.3: Effect of functional decomposition.

Functional decomposition can be defined for multiple single-output functions
fi(X), ..., fm(X), and considered as decomposing a multiple-output function F'(X)
= (fi(X), ..., fm(X)). In [18], a technique called hyperfunction encoding is in-
troduced to encode a multiple-output function into a single-output function with
[log, | F'|| auxiliary pseudo input variables. E.g., for m = 4, two auxiliary variables
A = {a1, a3} can be used to build the hyperfunction h(X, A) = —a;—asfi(X) +
s fo(X) + ar—an f3(X) + agas f4(X). Thereby, a single-output functional de-

composition algorithm can be applied to decompose a multiple-output function.

Functional decomposition can be achieved based on the reduced ordered binary
decision diagram (ROBDD) [8,20]. In BDD-based decomposition, the ROBDD of
the function f(X) under decomposition is built with the variable ordering constraint
that the bound set variables X, are ordered above the free set variables X,,. The cut
set of the ROBDD is the set of BDD nodes controlled by free set variables that are
pointed to by some edge from a node controlled by a bound set variable. Essentially,

for ¢ being the cut set size, then |Fy\| > [log, ¢]|.

Example 2.2 Figure shows the BDD-based decomposition for function y? of
the time-frame expanded circuit s27. The cut set {n;,ns,ng} is induced by setting
X\ = {a7, 23,28, 25} and X, = {2} ,23,27}. Necessarily two bits are needed to

13 doi:10.6342/NTU202001058



2.5. Functional Decomposition

bound set —

freeset —

Figure 2.4: BDD-based functional decomposition.

re-encode the bound set variables to distinguish the three cut set nodes. Hence,

[ > 2.

14
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Chapter 3

Time-frame Folding

Time-frame folding is the reverse operation of time-frame unfolding or time-frame
expansion. In this chapter, we describe the derivation of the minimum-state FSM
from folding an iterative (time-frame expanded) combinational circuit. The chap-
ter is organized as follows. The problem of time-frame folding is formulated in
Section [3.1] Our algorithmic solution is then presented in Section and imple-

mentation improvement in Section [3.3]

3.1 Problem Formulation

The problem of time-frame folding can be stated as follows.

Problem Statement 3.1 (Time-Frame Folding)
Given a k-iterative combinational circuit Co with inputs X!, ..., X* for X! =
{xf,... 2t} and outputs Y, ... . Y* for Y = {4¢,... ¢! }, find a sequential cir-

15 doi:10.6342/NTU202001058
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® @

combinational state |~ transition
circuit C¢ identification reconstruction

OD— &

state | state
encoding minimization

sequential
circuit Cs

Figure 3.1: Computation flow of time-frame folding.

cuit Cg with inputs X = {xy,...,2,} and outputs Y = {y1,...,ym} such that the
input-output behavior of Cg within the first £ time-frames is the same as that of Cc.

Moreover, the number of states of Cg is minimized.

Note that the statement makes no assumption on the circuit structure of Co but

only its inputs and outputs in an iterative form, crucial for time-frame folding.

3.2 Algorithm

The computation flow of the TFF algorithm is shown in Figure 3.1} Given as input
an iterative combinational circuit Co with inputs X1, ..., X7 for X' = {2t ... 2!}
and outputs Y1, ..., YT for Y = {yt ... 4!}, the algorithm returns a sequential
circuit with inputs X = {xy,...,x,} and outputs Y = {y;, ...,y } consistent with
Co in T time-frames. It consists of the following steps: 1) state identification by
functional decomposition, 2) state transition reconstruction, 3) state minimization,

and 4) state encoding. The steps are detailed in the following subsections.
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3.2.1 State Identification via Functional Decomposition

Given an iterative combinational circuit Cc with inputs X*, ..., XT for Xt = {a!,
., 2t} and outputs Y1 ... YT for Yt = {y! ...,y }, we show that the notion
of states at time-frame ¢ is induced by the output functions of Y**! ... YT Note
that the outputs Y* observed at time ¢ induce an equivalence relation on the set
of input assignments [X!'U...U X]. Effectively, the equivalence relation forms
a partition on [X!'U...U X']. Assume that the partition on [X'U...U X'] in-
duced by the equivalence relation imposed by the outputs Y*! ... Y7 has k cells
(equivalence classes). Then we know the signals communicating from iteration ¢ to

t needed to

iteration ¢ + 1 in circuit C¢ (i.e., the information of inputs X',... X
compute outputs Y ... YT) must have at least [log, k] bits. In the functional
decomposition viewpoint of Figure 2.3 by decomposing the hyperfunction f of the
output functions of Y™t U ... UY7T with bound set variables X, = X' U...U X!
and free set variables X, = X'"™ U ... U X7 U A, where A is the set of pseudo
input variables introduced to encode functions Y**' U... U Y7, the number of bits
needed to communicate from F) to f, in the picture of Figure [2.3|is at least [log, k].
Essentially the k equivalence classes correspond to the minimum states needed to
distinguish the input assignments [X'U...U X?] for the outputs Y ... YT to
produce correct valuation. Let Q" = {q},...,¢.} be the states representing the k
equivalence classes, and let 7t = {Tqi, e ,qu} be the set of transition conditions,
that is, characteristic functions, each characterizing a set of equivalent input assign-

ments in an equivalence class of [X'U...U X']. Then Q" and 7' can be obtained

from ROBDD-based functional decomposition by noting that Q' corresponds to the

17 doi:10.6342/NTU202001058
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cut set and 7! corresponds to the path conditions from the root node leading to the
cut set nodes. In the sequel, we let S* = {(g1,7y), .-, (g}, 7 )} be the set of state

and transition condition pairs at time t.

Example 3.1 To demonstrate how Q' and 7! are obtained from ROBDD-based
functional decomposition, we take y? in Figure as an example. To compute S*,
we build the hyperfunction h = ay? + —ay?® of the output functions y? and 3°® as
illustrated in Figure By performing functional decomposition on h, we obtain
St ={(a1,71)s (a3, 71)s (a3, 1), (aa, 71) }, where 71 = {—aha), ~w (vpay+—ay—ay),

wi(wyy + —rymwy), waows)

It should be noted that to compute S' both functions y* and 3® are needed.
Considering only 3?2 for the derivation of S* would be flawed due to the fact that two
states in Q! that seem to be equivalent at output y? may possibly be distinguished
at output y>. Essentially the partition induced by both 3, and s is a refinement of

the partition induced by s only.

For S? derivation, functional decomposition on y3 should be performed as is

illustrated in Figure [3.2b]

Given an iterative combinational circuit C¢, the state identification procedure for
computing S°, ..., ST is outlined in Algorithm . In line 1, SY and ST are singleton
sets as Q° has a single initial state ¢ and QT has a single don’t-care destination
state ¢I. Moreover, the transition conditions to ¢} and ¢! are tautologies. In
lines 2-8, S* for t = 1,...,T — 1 is computed through functional decomposition in
line 7 on the hyperfunction encoded in line 4. Procedure HyperEncode encodes the

output functions Y*! ..., Y7 into a single-output function k using the set A of fresh
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Xt uXx?

(a) Functional decomposition for S* derivation.  (b) Functional decomposition for S? deriva-
tion.

Figure 3.2: State identification.

new variables vy, ..., ay for k = [log,(|]Y*! + -+ + |Y7])]. Procedure Decompose
performs functional decomposition on the hyperfunction h and extract the cut set

and corresponding transition conditions.

Algorithm 1 Stateldentify
Input: Co with inputs X', ..., X7 and outputs Y, ..., Y7
Output: {S° S, ... ST}

1 8% ={(q}, D}; ST = {(¢], D)}
2: fort=1,...,T—1do

3 k= [logy(Y™ [+ -+ [YT]T;

4: h = HyperEncode(Y'"™™ U ... UYT A ={a,...,ax});
5: Xy =X'U..UuXtb

6: X, =X"TU.UXTUA,

7: St := Decompose(h, Xy, X,.);

8: end for
9: return {S° S' ... ST};

3.2.2 Transition Reconstruction

With the sets S°, ..., ST of state and transition condition pairs being obtained, the
next step is to determine the transitions among the states and construct the state
transition graph.
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Given an iterative combinational circuit C¢, and the sets S°, ..., ST as input,

t

=1 qjt) of states in adjacent two time-frames,

Algorithm [2 computes, for every pair (g
the input condition and output response under the transition from qffl to q;-. Es-

sentially, the input transition condition can be characterized by the QBF

@E,j = EI)(I7 o ,Xt_l.Tq;s—l /\Tq;t_ (31)

and the output transition response can be characterized by the set of QBFs

Ui =3XY L X T e Ay (3.2)

for yt € Y'. In line 5, the procedure TransitionTuple returns the four-tuple (g/*

1 Y

@, 0555 {0y | v € Y'}). The algorithm returns the collected four-tuples R for all

state transitions. According to R, one can construct an FSM.

Algorithm 2 TransitionReconstruct

Input: Cc, {S°,..., ST}
Output: transition four-tuples R
: R= (Z);
fort=1,...,T do
foreach (¢ ', 7,,1) € 5" do
foreach (q?,%g) € S" do
R=RU Tmnsz’tionTuple(Tq;,_l,Tq;s_, Y*);
end for
end for
8: end for
9: return R;

Example 3.2 To illustrate, we derive the input condition for the transition from
qi to ¢? shown on Figure where 11 = —wgay, T = —aha) - (—af (a3 4 x3) +
i) ol o) el 1 = (oelalet sl (Codor o) (0
—-x3) + z}(x) + —z}) + ~xlzl—-xl. The input transition condition and the output
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transition response can be derived by: ¢f | = 3X .71 AT2 = - (—ai+a3)+ainwie]

and ¢f = 3X".7 Ay? = xf(23 + —f), which corresponds to the edge labeled with

"00--/0, 011-/0, 10-1/0” between ¢ and ¢? in Figure [3.34]

3.2.3 State Minimization

Notice that although by functional decomposition we guarantee that |S?| is min-
imum, the FSM constructed from R may not be state minimum. It is because
equivalent states in different time-frames are not yet considered. In the FSM de-
rived from time-frame folding, there is a unique initial state ¢ and final don’t-care
state gI'. As the FSM is incompletely specified at state g7, the flexibility provides
room for state minimization. In our implementation, we apply the SAT-based exact

minimization algorithm MeMin [1]| for FSM simplification.

Example 3.3 The FSM in Figure [3.3a] can be minimized to that in Figure [3.3b
The number of states reduces from 10 (including the unspecified state ¢.) to 5.
In Figure [3.3b] each state is annotated with its compatible states in Figure [3.3a]
In each time-frame except for the last, the states being identified are minimized
such that none of them can be merged into the same state. For instance, the states
reached at the first time-frame ¢}, 3, ¢ and ¢f in Figure [3.3a] correspond to different
states ¢3, ¢5, ¢5 and g}, respectively, in Figure Note that the minimized FSM
in Figure [3.3b| would not necessarily be equivalent to that of the original sequential

circuit s27 in Figure [3.3d, and more details are discussed in Subsection [5.1.1]
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-0-1/0 @
010-/1, 10-0/1, 11--/1 @
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(a) FSM from folding 3 time-frames (before state minimization).

0---/0, 1---/1

00--/0, 011-/0, 10-1/0

00--/1, 011-/1

{q?,q%,49%, 4¢3} (q3,q92, ¢33 143,42, q%}

(b) FSM from folding 3 time-frames (after state minimization).

-10-/1

10-0/1, 111-11

10-0/1, 111-/1

011-/1, 00--/1
(c) FSM of original s27 circuit.

Figure 3.3: State transition graphs of FSMs.
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3.2.4 State Encoding

To transform an FSM into a sequential circuit, a final state-encoding step has to be
performed. Let () be the state set of the FSM. In our implementation, we try two
different encoding schemes: 1) natural encoding, which uses [log, |Q|] bits, and 2)

one-hot encoding, which uses |@| bits, each of which represents a state in Q).

3.3 Implementation Issues

To improve state identification, we make two modifications to the Stateldentify

algorithm:

e Reverse-chronological order enumeration: The index ¢ in the for-loop in line
enumerates from 1 to T'— 1. As ¢ increases, the number |[Y*U...UY 7| of functions
that have to be encoded decreases. Also there is a huge overlap of functions to be
encoded at two consecutive time-frames ¢ and ¢ + 1, which is {Y*™! ... YT} Asa
result, by reversing the enumeration order for ¢ from 7'—1 to 1, the hyperfunction

h can be built incrementally by adding Y to h one at a time in each iteration.

e Re-encoding hyperfunction: Now that the state and transition condition pairs
identified at each time-frame are constructed in a reverse-chronological order,
after we obtain S* by decomposing the hyperfunction A built at time frame ¢ + 1,
the variable in X**! is no longer relevant in deciding partition of [X' U ... U X].
Hence, we can re-encode h into a more compact representation with less variables

to reduce the circuit size. Essentially the variables X! in h can be replaced with
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a new set of variables of size [log, |S!|] in a way preserving the cut set nodes of /.
Therefore h can be represented more compactly. The re-encoded hyperfunction is

then be passed down to the next iteration.
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Chapter 4

Circuit Folding for Time

Multiplexing

In this chapter, we further extend the concept of “folding” for general combinational
circuits, not exclusively for the iterative ones as described in Chapter [3] to achieve
time multiplexing. In addition to the functional folding method, which exploits the
time-frame folding technique, we also introduce the structural method, which only
requires a traversal through the circuits for the intended objective. The chapter is
organized as follows. The problem of time multiplexing is formulated in Section [4.1]

Our algorithmic solutions are then presented in Sections [4.2] and [4.3]

4.1 Problem Formulation

The problem of circuit folding for time multiplexing can be stated as follows.
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Problem Statement 4.1 (Circuit Folding for Time Multiplexing)

Given a folding number 7" and a combinational circuit Ce with inputs U = {uy, ..., u,}
and outputs W = {wy, ..., w, }, we are asked to fold C¢ into a sequential circuit Cg
with inputs X = {z1,...,2,} and outputs Y = {y1,...,ym }, where m = [n/T]
and m’ < n/; such that unfolding (expanding) Cg by T' time-frames yields a com-
binational circuit C; with inputs (X!,..., X7) and outputs (Y',...,YT) that is
functionally equivalent to Co under some proper association of their inputs and out-
puts. That is, Cs achieves time multiplexing by taking T' clock cycles, each taking

m partial inputs, to execute the computation of C¢.

In the sequel, we assume without loss of generality that n is divisible by T" as one

can always add dummy inputs (with no fanouts) to C¢ to satisfy the divisibility.

We present two methods, structural circuit folding and functional circuit folding,

for time multiplexing as follows.

4.2 Structural Circuit Folding

To find the sequential circuit Cg of the circuit folding problem of Section let
the inputs U of the given combinational circuit Cc be divided into T groups: X! =
{ug, ..., up}, ..., XT = {u@—1)xm, - -, un}. We then traverse the logic gates of C¢
in a topological order by T iterations. At iteration t, for t = 1,...,T, a topological
traversal is initiated at the inputs X*. A gate will be visited if and only if all of
its fanins have been visited. On a visit to a gate in C¢, a corresponding gate will
be duplicated in Cg. If a primary output of C¢ is visited, then it will be scheduled
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outputs | | |
flip-flops

—

intermediate info.
A

time-frame info
A
counter or
shift register

inputs X1 X2 xT

Figure 4.1: Illustration of structural circuit folding.

to output Y at time-frame ¢ in Cg. At the end of each iteration, the gates in the
frontier of the traversal is collected, each of which has a newly introduced flip-flop
in Cg to store its value. After T iterations, all the gates in Co have been visited.
Moreover, additional flip-flops are introduced to track the time-frame information,
either with a [log,(7)]-bit counter using binary encoding or a T-bit shift register
using one-hot encoding. The corresponding control logic is then added to select
the correct output at each time-frame. Finally, we can obtain a sequential circuit
Cs with inputs X = {z1,...,2,}. The number of outputs of Cg is determined
by the maximum number of outputs being scheduled in a time-frame among the
T time-frames. Figure illustrates the iterative-layering procedure of structural
circuit folding. Different colors in the figure indicate the gate traversal at different
time-frames. The frontier of each traversal is circled by a rounded rectangle and
their signals are stored in the flip-flops, serving as the pseudo inputs to the circuit

traversed in the next iteration.
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Figure 4.2: Example of 3-bit adder (3-adder) circuit under folding.

Example 4.1 To illustrate the procedure of structural circuit folding, we take the
3-bit adder in Figure[4.2]as an example. The adder has inputs U = AUB and outputs
W = {so, s1, S2, Cout }, where A = {ag,a1,a2} and B = {bg, b1,by} are the 2 input
3-bit numbers, with a; and b; being the i*" bits of A and B, respectively, s; the i'!
summation bit, and ¢y, the carry-out bit. The inputs are grouped as X' = {aqg, by},

.., X3 = {ag,by}. The gates in Figure marked in green, blue, and orange
correspond to the gates visited at the first, second, and third iteration, respectively.
A total of 5 flip-flops are introduced, 2 for storing the intermediate information of
g» and gg, which are essentially the carry bits of the first two iterations, and 3 for
storing the time-frame information as a shift register. The number of outputs of Cg
is determined by |Y3| = 2. The outputs are scheduled as follows: Y = {s¢, null},
Y? = {s1,null}, and Y3 = {89, Cous}, where null denotes a dummy output. With
the control logic being added for selecting the correct output at each time-frame,
Cs can be synthesized to a circuit with 2 inputs, 2 outputs, 5 flip-flops, and 23 AIG

nodes (or 8 6-input LUTS) [7].
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Although the structural circuit folding method is efficient and scalable to large
circuits, the constructed sequential circuit Cg can be sub-optimal. Taking 3-adder
of Figure for example, we know that ultimately Cs can be implemented with an
1-bit carry-save adder, consisting of only 1 input, 2 outputs, 1 flip-flop, and 7 AIG
nodes (for a full adder implementation). It motivates the functional circuit folding

approach as we present next.

4.3 Functional Circuit Folding

We exploit the time-frame folding (TFF) technique in Chapter [3[to the time multi-
plexing problem. Note that the original TFF cannot be applied directly because it
assumes the given combinational circuit under folding is in an iterative form. How-
ever, time multiplexing must work for general combinational circuits not necessarily

iterative ones. Below we detail the functional circuit folding method.

As shown in Figure the functional circuit folding algorithm consists of three
main computation steps: 1) pin scheduling, 2) FSM construction via time-frame
folding, 3) FSM minimization, and 3) FSM encoding, to be presented in the following

subsections.

4.3.1 Pin Scheduling and Iterative Circuit Conversion

Given a folding number 7' and a combinational circuit Co with inputs U = {uq,
..y Up}t and outputs W = {wy,...,w,}, the pin scheduling procedure permutes
the inputs and outputs (and possibly adds dummy inputs and outputs) to convert
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Figure 4.3: Computation flow of functional circuit folding.

Cc into a wirtual T-iterative combinational circuit C, with inputs X!, ... X7 for
Xt={zt ... 2! } and outputs Y ... YT for Y = {yt,... ¢! ,}, where m = [n/T]
and m’ < n/. The circuit after scheduling must satisfy the property that every
primary output w; € W is scheduled at some iteration ¢ while its input supports are

scheduled in iterations t’ < ¢.

Algorithm [3| shows a heuristic scheduling procedure of outputs W = {wy, ...,
wyy } with respect to a folding number 7. In line 1, the number m of inputs in one
circuit iteration is calculated. In line 2, the set of outputs W is sorted according
to their support sizes in an ascending order. In line 3, the sets Uy, Y1, ..., YT
are initialized to be empty. In lines 4-8, the loop goes over each output w; to
determine its iteration. In line 5, the support set of w; is added to Us,,. In line 6,
the earliest available iteration ¢ for w; is calculated. In line 7, w; is assigned to Y.
Finally, the output schedule is returned in line 9. Note that to make the number of
outputs scheduled at each iteration identical, null (dummy) outputs are inserted to
Y! ...,YT. In our implementation, we also try to minimize the number of outputs

by prolonging some of the scheduled outputs.
With the outputs being scheduled, the inputs W = {wy, ..., w, } can be sched-
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Algorithm 3 OutputSchedule

Input: Co with inputs U = {uy,...,u,} and outputs W = {wy,...,w,}, folding
number T’
Output: output schedule Y, ..., Y7
m :=n/T;
SortAscend(W);
Usp, Y1, ..., YT =0
foreach w; in W do
Usup = Usup U Support(wl),
£ (U gl
Yt =Y U {w};
end for
return (Y1 ... Y7T);

uled accordingly as outlined in Algorithm[d] Let X .. be a queue to store the ordered
inputs. In line 1, X, is initialized as an empty queue. In lines 2-6, the loop iterates
through each scheduled outputs Y to fill in the queue. In line 3, the supports Xy,
of Yt that have not yet been scheduled during the previous iterations are collected
in queue Xy,,. In line 4, an optional optimization step is performed to reorder Xj,,.
Since the FSM construction algorithm in the later step relies on BDD-based opera-
tions, a smaller BDD size of Ci, would help to reduce the execution time. Therefore,
BDD variable reordering with symmetric sifting [26] technique is applied to X, to
minimize the BDD size of outputs Y of Cc. In line 5, X, is pushed into the queue
X gue- In line 7, X, is evenly divided into T groups X', ..., X7, which are finally

returned in line 8.

Example 4.2 Consider the 3-adder example in Figure 4.2 After pin scheduling,
we have outputs Y = {sg, null}, Y? = {sy,null}, Y3 = {s9,cout}, and inputs
X' = {ap,bo}, X? = {a1,b01}, X® = {as,b:}. Note that the null (dummy) outputs

are inserted to make the number of outputs scheduled at each iteration identical.
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Algorithm 4 InputSchedule

Input: Co with inputs U = {uy,...,u,} and outputs W = {wy,...,w,}, folding
number 7', and output schedule Y, ... YT
Output: input schedule X!, ... X7
1 Xgye == 0:
2: fort=1,...,7 do
3 Xouwp 1= Support(Y) \ Xgue;
4: Xieord := BddSymSift(Co,t, Xsup);
o: Xque = Append(Xquea Xreord);
6
7
8

: end for
(XY XT) = Split(X e, T);
. return (X!, ..., X7T);

4.3.2 FSM Construction via Time-Frame Folding

Given an T-iterative combinational circuit C,, with inputs X' ... X7 for X! =
{xf,... 2t} and outputs Y ... YT for Y* = {yt, ... ¢!}, the TFF algorithm
in Chapter |3 can be applied to construct an FSM with inputs X = {xy,...,z,}
and outputs Y = {y1,...,yu}, which has the same input-output behavior as Cg
within the 7" bounded time-frames. The algorithm relies on BDD-based functional
decomposition to identify the internal states and construct the transitions between
states according to the identified state information. Some minor modifications to
the TFF algorithm are needed as we discuss below. In Chapter [3, the iterative
circuit being folded or transformed is fully-specified, that is, there are no null output
functions. Because null functions do not provide any additional information for
state partitioning, they can simply be discarded from Y+, ... Y7 or be treated as
constant functions during the encoding stage of state identification. Similarly, when
determining the output response of a state at time-frame ¢, if there is a null output
scheduled at that time-frame, then its corresponding slot should remain unspecified.

Following the notation of Chapter [3| @ = {q!,...,q}} is used to denote the set of
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states identified at time-frame ¢.

4.3.3 FSM Minimization

In the derived FSM, there is a unique initial state s{ and a don’t-care destination
state s inserted by the TFF algorithm, along with some null (dummy) outputs at
several states. As the FSM is incompletely specified, the flexibility leaves room for
state minimization. Again, we adopt the SAT-based exact minimization algorithm

MeMin [1] for FSM simplification as in Chapter [3|

Example 4.3 The state diagram in Figure [f.4a] where the mark “>" indicates
the initial state, is obtained by folding the 3-adder circuit by 3 time-frames with
the functional circuit folding algorithm. It can be further minimized to that in
Figure . The number of states reduces from 6 (including the don’t-care state
s3) to 2. In Figure each state is annotated with its compatible states in
Figure [4.4a] We can observe that the minimized FSM is essentially a carry-save
adder, where s, and s} corresponds to the state with carry-bit of value 0 and 1,

respectively.

4.3.4 FSM Encoding

The step is identical to that described in Subsection Two encoding methods:
1) natural binary encoding and 2) one-hot encoding are applied to convert the FSM

into a sequential circuit.
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(b) FSM after state minimization.

Figure 4.4: FSM by functional circuit folding of 3-adder.
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Chapter 5

Experiments

In this chapter, we evaluated our proposed methods on circuits selected or con-
verted from several sets of benchmarks, including ISCAS, ITC, MCNC(LGSynth),
LEKO/LEKU, Adder, and EPFL benchmarks. The proposed algorithmic meth-
ods were implemented in C+-+ language within the ABC system [7], which utilized
CUDD |[31] as the underlying BDD package. Moreover, an open source package
MeMin [1] was used for state minimization. All the experiments were conducted

on a Linux server with Intel(R) Core(TM) i7-8700 3.20GHz CPU and 32GB RAM.

5.1 Time-frame Folding

TFF algorithm was evaluated with respect to three sets of benchmark circuits. Two
were obtained from unfolded and simplified ISCAS and ITC circuits, and one was
obtained from QBF solving of adaptive homing sequences [35]. A timeout limit of
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300 seconds is imposed on timefold (steps 1 and 2 in Figure [3.1)), and the same
limit is imposed on MeMin for state minimization (step 3 in Figure . Also, an

expansion limit of 5000 time-frames was imposed.

The results on ISCAS and ITC benchmarks are shown in Table [5.I, where
Columns 2-5 list the numbers of primary inputs, primary outputs, latches, and
AIG nodes, respectively, after optimization of the original sequential circuits, Col-
umn 6 lists the maximum time-frames that can be expanded and folded back within
the timeout limit, Columns 7 and 8 list the numbers of states of the folded circuit
before and after state minimization, respectively. For an entry in the table contain-
ing two values separated by “/”, it indicates that MeMin reached its timeout limit
before timefold reached its maximum number of time-frames. The value on the
left of “/” shows the data that both timefold and MeMin are executed successfully,
while the value on the right shows the data that only timefold can be done within
the timeout limit. Circuits b01 and b02 reached the 5000 time-frame limit and are

marked with the “*” sign.

From the table, the numbers of foldable time-frames within 300 seconds vary to
some extent, roughly proportional to the growth rate of the number of states. On
the other hand, the performance of MeMin exhibited somewhat non-robustness. For
example, for 8382 expanded with 51 time-frames, the 11983 states can be successfully
minized to 1367 states within 300 seconds; in contrast, for s713 expanded with
4 time-frames, the 75 states cannot be minimized within 300 seconds. For the
homing sequence benchmarks, the results are shown in Table [5.2] As the depths of

the adaptive homing strategies are not large, our method successfully generates all
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sequential circuits.

Table 5.1: Results of TFF on ISCAS and ITC benchmarks.

[ circuit [ #PI | #PO [ #FF | #gate [[ #frm | +state | #m-state |
b01 2 2 5 38 5000%* 22493 18
b02 1 1 4 16 5000%* 9997 8
b03 4 4 21 55 88 24968 631
b04 11 8 66 333 4/5 132/77195 130/-
b05 1 36 34 405 621 37804 69
b06 2 6 8 26 367 4367 13
b07 1 8 39 320 520 37599 83
b08 9 4 21 122 72 29003 798
b09 1 1 28 120 24/32 10241/96299 3795/-
b10 11 6 16 151 16/24 3248/10746 602/-
b1l 7 6 30 469 15/21 2542/29458 676/-
b12 5 6 119 910 107 10317 1104
b13 10 10 45 168 117/158 10276/211252 139/-
bl4 32 54 215 3689 2 3 2
bl5s 36 70 415 6587 6 11 8
b17 37 97 573 7648 7/11 103,/13826 93/-
b18 36 23 3320 0 92 17444 382
b20 32 22 429 7956 2 3 1
b21 32 22 429 8067 2 3 1
b22 32 22 611 12339 2 3 1
s27 4 1 3 8 189 940 5

s208.1 10 1 8 48 183 12685 129
298 3 6 14 70 55 5841 135
s344 9 11 15 91 5/43 1262/39618 863/-
$349 9 11 15 91 5/44 1262/40634 863/-
s382 3 6 21 92 51 11983 1367
386 7 7 6 81 115 1458 13
s400 3 6 21 92 51 11983 1367

s420.1 18 1 16 101 187 13201 129
s444 3 6 21 95 51 11983 1367
s499 1 22 22 118 416 8922 22
s510 19 7 6 204 45/88 967/2984 44 /-
526 3 6 21 88 51 12021 1370
s641 35 24 14 100 2/4 3/75 2/-
S713 35 23 11 100 2/1 3/75 2/
s820 18 19 5 200 62 1336 24
s832 18 19 5 215 67 1456 24

s838.1 34 1 32 214 189 13459 129
s938 34 1 32 214 188 13330 129
5953 16 23 [ 29 282 9/21 270/6146 111/-
s967 16 23 29 285 9/20 270/6096 111/-
S991 o5 7 19| 331 12 2/6 i
s1196 14 14 18 367 1/3 2/1934 1/-
51238 11 11 18 | 394 1/3 2/1031 1/-
1269 18 10 37 413 1/2 2/4340 1/-
51423 7 51 73| 435 6/3 198/ 15698 396~
s1488 8 19 6 472 7 3150 48
1494 8 19 6 484 82 3390 48
s1512 29 21 57 342 5/9 32/2019 24/—
83271 26 14 115 836 11 185 154
s3330 40 73 65 557 1 2 1
s3384 43 26 183 1006 5 13 12
s4863 49 16 81 789 1/2 2/1542 1/-
sh378 35 49 127 736 1 2 1
s6669 83 55 231 2226 0 - -

92341 | 36 39 [ 129 759 0/2 /10 -

s13207 | 31| 121 | 193 | 547 11/13 | 8034/27394 8033/

s15850 14 87 128 375 769/770 776777 11/-

$35932 35 320 1472 7345 5 90 53

s38417 28 106 1345 7179 2/3 6/114 5/-

38584 | 12 | 278 | 784 | 4456 5/6 162/754 T41/-

37
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Table 5.2: Results of time-frame folding on homing sequence benchmarks.

[ circuit H #PI [ #PO [ 7#gate H #frm [ #state [ #m-state ]

5s2i0_c 3 3 1 3 6 4
5s2i0_r 3 3 0 3 4 1
5s2i2_c 4 4 1 4 9 4
5s2i2 1 4 4 2 4 8 5
10s5il ¢ 12 12 175 4 35 29
10s5i4 ¢ 12 12 105 4 30 24

To better understand the relation among the number of states, the number of
time-frames, and the runtime, circuits b07, b18, s499, s386, s1494, and s15850
were selected for study. Figure [5.1| shows the relation between the number of states
and the number of expanded time-frames. It can be observed that the number
of states before minimization (solid lines) constantly increased with the number of
time-frames, whereas the number of states after minimization (dotted lines) tended
to saturate after a certain number of time-frames. This phenomenon is expectable
as all inequivalent states should be distinguished eventually. On the other hand,
Figure shows the relation between the total runtime (in gray) of timefold and
MeMin combined and the number of time-frames. The runtimes of timefold and
MeMin are plotted as bar charts every 5 time-frames in blue and green, respectively.
The positive correlation between the runtime and the number of expanded time-

frame is expected.

5.1.1 Fixed Point after TFF

We verified the consistency between the constructed sequential circuits and their
corresponding expanded iterative combinational circuits. In the cases of our ex-
periments, we observed that the constructed sequential circuit tends to become se-

quentially equivalent to its original sequential circuit when the number of expanded
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Figure 5.1: #state vs. #time-frame.

time-frames is sufficiently large. We call this phenomenon as a fized point. However,
the sequential equivalence may not happen immediately at the time-frame when the
number of states starts to saturate. Let ¢; be the initial state of the state transition
graph, m; ; be the length of the shortest path from state g; to state ¢;, and n,; be
the length of the shortest sequence distinguishing states ¢; and ¢;. Also let m be
the maximum length among the shortest paths from the initial state to any other
states, i.e., m = max{m, ;}, for any ¢; € Q,j # 1; let n be the maximum length
among the shortest sequences distinguishing any state pairs, i.e., n = max{n, ;}, for
any g;,q; € Q,t # j. In fact, if the reachable state sets grow monotonically during
time-frame expansion, then the fixed point is guaranteed by expanding the circuit

no greater than m + n time-frames.

Table (5.3 shows the time-frame numbers in columns 2-3 when the number of

states starts to saturate and when the obtained circuit starts to become sequen-
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tially equivalent to the original circuit. Note that not every considered circuit is
listed in Table [5.3] because some of them are not able to reach these two conditions
within their maximally expanded time frames. The table lists in columns 4-6 the
information of the original sequential circuits and the expanded combinational cir-
cuits, which are expanded respectively by the number of time-frames that reaches
fixed point. Also, columns 7-12 shows the numbers of flip-flops and gates of the
folded sequential circuit under two different encoding schemes, and the correspond-
ing reduction ratio on the numbers of gates compared to those of its corresponding
time-frame expanded circuit. As generally observed, natural encoding can result in
fewer flip-flops, but require more gates, while one-hot encoding can achieve better

gate count reduction, but require more flip-flops.

Table 5.3: Results on folding with fixed point.

o #frame original expn. natural encoding one-hot encoding
cireuit sat. p. #FF | #gate | F#gate | #FF | F#gate redu. #FF | #gate redu.
b01 9 9 5 38 52 5 104 -100.00% 18 52 0.00%
b02 6 10 4 16 4 3 16 -300.00% 8 16 | -300.00%
b03 14 14 21 55 189 10 8947 | -4633.86% 631 1848 | -877.78%
b05 69 | 133 34 405 | 35173 7 52 99.85% 69 11 99.97%
b06 6 7 8 26 52 4 82 -57.69% 13 45 13.46%
b07 85 85 39 320 13822 7 75 99.46% 83 54 99.61%
b08 55 55 21 122 5538 10 3395 38.70% 798 1083 80.44%
b18 50 50 129 2178 | 33139 9 2516 92.41% 382 1068 96.78%
s27 3 5 3 8 29 3 23 20.69% 5 42 -44.83%
s298 20 23 14 70 838 8 1489 -77.68% 135 767 8.47%
s386 8 9 6 81 297 4 117 60.61 13 74 75.08
s499 22 23 22 118 1333 5 71 94.67% 22 86 93.55%
s820 12 13 5 200 1484 5 276 81.40% 24 1360 8.36%
s832 12 13 5 215 1390 5 248 82.16% 24 1245 10.43%
s1488 23 23 6 472 7422 6 492 93.37% 48 341 95.41%
s1494 23 23 6 484 7693 6 523 93.20% 48 334 95.66%
s15850 5 5 128 375 24 4 29 -20.83% 11 24 0.00%

5.1.2 Circuit Size Compaction

To verify that our proposed method indeed has the ability in circuit size compaction,
we compared the sizes of the expanded combinational circuits to their folded sequen-
tial circuits in terms of AIG nodes. The ISCAS and I'TC benchmark circuits selected
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for comparison are the ones that have reached the number of time-frames to observe
sequential equivalence, and are expanded by that number of time-frames. Note that
for time-frame folding, there is no need to expand more than that number of time-
frames, since the folded sequential circuit will remain the same, while the expanded
combinational circuit will continue to grow in size. Additionally, homing sequence
benchmarks are also included for comparison. The results are plotted in Figure [5.3]
where black data points correspond to ISCAS and ITC benchmark circuits, and the
blue ones correspond to homing sequence benchmarks. Both natural and one-hot
encoding schemes were applied, and the one resulted in a smaller circuit size was
taken for comparison. The data points on the right of the gray dotted line corre-
spond to the cases where the obtained sequential circuits are of size smaller than
their combinational counterparts. We observed that larger circuits tend to bene-
fit more from our method, as the combinational circuits with over 200 AIG nodes,
when folded into sequential circuits, are all reduced significantly in size. Note that
the upper-most (worst-case) point in Figure is the circuit b03 expanded with
14 time-frames. Although time-frame folding does not achieve compaction in this
case, it is expected that, when more time-frames are to be expanded, the iterative
combinational circuit size will keep growing while the folded sequential circuit size

will remain the same.

5.2 Time Multiplexing via Circuit Folding

The proposed structural and functional methods were evaluated on 27 combinational

circuits shown in Table [5.4) where columns 2-5 list the numbers of primary inputs,
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Figure 5.3: Circuit size after TFF.

primary outputs, AIG nodes, and 6-input LUTs, respectively, of the circuits after

“*7 are simplified from the original circuits

optimization. The circuits marked with
by extracting some primary outputs and keeping only the structural input support

of those outputs.

Table 5.4: Benchmark statistics.

[ circuit H #PI [ #PO [ Hgate [ #LUT ]
64-adder 128 65 507 96
128-adder 256 129 844 244
128-parity 128 1 381 33
apex2 38 3 1448 581
arbiter* 256 1 361 102
bl4 C 276 299 3890 1152
bl5 C 484 519 6801 1966
bl7 C* 380 3 1634 381
b20 C 521 512 8173 2221
b21 C 521 512 8250 2311
b22 C 766 757 12355 3375
bcb 26 39 1554 530
C7552 207 108 1485 340
des 256 245 3087 717
e64 65 65 244 114
g216 216 216 3982 648
625 625 625 10625 2498
g1296 1296 1296 31447 5184
hyp 256 128 213158 45142
i2 201 1 208 63
i3 132 6 126 38
i4 192 6 186 42
i10 257 224 1586 507
max 512 130 2776 812
mem _ ctrl 1204 1231 15908 5207
too_large 38 3 2642 1111
voter 1001 1 12400 1667

43
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5.2.1 Structural Folding on Large Circuits

We first evaluate the effectiveness of the structural method for time multiplexing by
imposing the I/O pin count limitation to 200, according to some commercial FPGA
specifications. In addition, a simple alternative to fold a circuit by 7" time-frames
can be done by temporarily storing inputs of the first 7'— 1 time-frames into flip-flops
and defer computing all outputs at the last time-frame. Table [5.5] shows the results
on folding 17 benchmark circuits with more than 200 pins under 5 different settings.
Due to the space limitation, the table is split into 2 subtables. Columns 2-3 of each
subtable list the number of time-frames each circuit should be folded and the number
of inputs after folding, and the rest of the columns list the information of the folded
circuit under different settings. The “simple” setting corresponds to the method by
temporarily storing inputs described earlier, and the “structural” setting corresponds
to the structural method presented in Section In the settings annotated with
“s”, we applied pin scheduling procedure outlined in Subsection[4.3.1] In the settings
annotated with “t”, flip-flops were reused during folding to lower the flip-flop usage,
under the condition that the value held by a flip-flop at current iteration is no
longer needed in the computation of the following iterations. Under each setting,
the 5 columns list the information of folded sequential circuit, including the number
of outputs, flip-flops, AIG nodes, 6-input LUTs, and the LUT overhead incurred
comparing to the original combinational circuit, respectively. The average LUT
overhead is listed in the last row of Table 5.5l The experimental results indicate

the ability of the structural method on meeting the I/O pin constraintﬂ The circuit

3Note that the number of output pins can be larger than 200. In that case, multiple clock cycles
can be taken to produce the outputs.
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size in terms of LUT usage before and after folding is plotted in Figure [5.4} The
data points on the left of the gray dotted line correspond to the cases where the
folded circuits are of size larger than the original combinational circuits. It can be

observed that circuit folding would incur some LUT overhead in most cases.

The best overall results of structural folding were obtained by applying both the
pin scheduling and flip-flop reuse procedures, and incurred an average of 20.07%
LUT overhead, despite the fact that there are cases, 128-adder, hyp, i2, with
LUT savings. Notice that the LUT increase could not be a serious problem as
the LUT resources are not as critical as the I/O pin bottleneck in FPGAs. The
experiments show that the pin scheduling procedure can reduce the number of output
pins of the folded circuit, and that flip-flop reuse procedure can lower the flip-flop
usage. Therefore, the 2 methods combined can result in a folded circuit with lower
complexity (less LUT usage). As all the experiments were done in less than a second,

the results demonstrate the scalability of the structural method.

When applied to the 17 benchmark circuits in Table [5.5], the additional control
circuitry to store the input signals of the simple method incurred an average 46.59%
LUT overhead, which is 26.52% higher than the proposed structural-sf method.
The number of flip-flops required for the simple method is larger or equal to the
structural-sf method in all cases. The number of output pins after this simple folding
remains the same as the number of primary outputs of the original combinational
circuit, since all the outputs are scheduled to be computed at the last time-frame.
In contrast, the structural method can achieve output pin reduction on 11 out of the

17 cases. In comparison, the structural-sf method is better than the simple method
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when taking the number of LUTs, flip-flops and output pins into consideration.

To study the potential of latency reduction by circuit folding, we perform case
analysis on circuit 110, with 257 PlIs and 224 POs. The analysis is based on the
following assumptions: 1) Assume the maximum I/O transmission rate is 200 bits
per /O clock cycle. 2) Assume TDM ratio r = 1, i.e., the system clock cycle equals
the I/O clock cycle, for the circuit without folding and the circuit with folding. 3)
Assume the combinational logic of both circuits without and with folding can be
computed in one I/O clock cycle. With structural circuit folding, 110 would be
folded by two time-frames into a sequential circuit with 129 inputs and 180 outputs
as shown in Table [5.5] with 44 outputs scheduled in the first time-frame and 180
scheduled at the second time-frame. The overall execution requires three system
(also I/0O) clock cycles: the first cycle transmits 129 inputs, second cycle 129 inputs
and 44 outputs, and third cycle 180 outputs. In contrast, without circuit folding, the
execution of 110 requires a total of four I/O clock cycles: the first cycle transmits
200 inputs, second cycle 57 inputs, third cycle 200 outputs, and fourth cycle 24
outputs. Effectively, circuit folding may achieve 25% 1/0 clock cycle reduction. In
fact, TDM aims at increasing the effective 1/O pins of FPGA by slowing down the
system clock to increase /O transmissions during a system clock period, while our
circuit folding can directly decrease the required number of pins of a logic circuit.
The TDM and circuit folding methods are orthogonal, and can be combined to

alleviate the FPGA 1/0 bottleneck issue.
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Figure 5.4: Circuit size after structural folding.

5.2.2 Comparing Structural and Functional Folding

To compare the performance of the structural and functional methods, we conducted
experiments on 11 benchmarks, each being folded by 4, 8 and 16 time-frames. A
timeout limit of 300 seconds was imposed on pin scheduling and FSM construction
combined (steps 1 and 2 in Figure , and the same limit was imposed on MeMin
for state minimization (step 3 in Figure [4.3). Table shows the 33 results, where
columns 2-4 list the folding number and the numbers of input/outputs of the folded
sequential circuits, respectively, and columns 5-15 list the folded circuit information
of the two methods, including the number of outputs, AIG nodes, LUTs, and flip-
flops. The results of the functional method are annotated in column 14 with the

applied configurations: whether to enable input reordering (r/nr), whether to mini-
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mize FSM states (m/nm), and the two encoding options (nat/lhot). Column 8 lists
the numbers of states before and after minimization (separated by */”), columns 12-
13 list the reduction on the numbers of LUTs and flip-flops, respectively, of the
functional method over the structural method, and column 15 lists the CPU time
in seconds of the functional method on each benchmark. An entry “-” in the table
indicates that the value cannot be obtained within the timeout limit. The structural
method took less than a second for all the experiments, while the functional method
generated results for 29 of the 33 instances within the timeout limit. On the other
hand, the functional method achieved an average of 40.40% and 33.74% reductions

on LUT and flip-flop usage, respectively, over the structural method in the 29 cases.

In addition, we compared the sizes of the original combinational circuits to their
folded sequential circuits under the two methods in terms of the number of LUTs.
The results are plotted in Figure [5.5], where the triangular and circular points cor-
respond to the results of the structural and functional methods, respectively, and
the blue, green, and orange points correspond to results folded by 16, 8 and 4 time-
frames, respectively. The data points to the right of the gray dotted line are the
cases where the folded circuits are smaller than their combinational counterparts.
It is interesting to note that 20 of the 29 results obtained by the functional method
achieved circuit size reduction, while 26 of the 33 results from the structural method
incurred LUT overhead. The overhead of the structural method is understandable
because circuit folding introduces additional control logic and flip-flop boundaries

to the original circuit that restricts combinational synthesis.

From the experimental results in Table[5.6 we notice that the functional method
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Figure 5.5: Circuit size comparison between structural and functional folding.

performs especially well on certain types of circuits with intrinsic iterative structures,
such as 64-adder and 128-parity. Since the original TFF algorithm is designed for
iterative circuits, the phenomenon is conceivable. We further conducted experiments
on adders and majority voters. For an n-bit adder with 2n primary inputs and n+1
primary outputs, it is folded by n time-frames, resulting in a sequential circuit with
2 input pins and 2 output pins. Similarly, for an n-bit majority voter with n primary
inputs and 1 primary output, it is folded by n time-frames, resulting in a sequential
circuit with 1 input pin and 1 output pin. The results of folding adders and voters
are shown in Table and Table 5.8l Columns 2-3 of the 2 tables list the size infor-
mation of the original combinational circuit, column 4 lists the folding number, and
columns 5-15 list the folded circuit information of the two methods, including the
number of AIG nodes, LUTs, and flip-flops. Column 8 lists the numbers of states

before and after minimization (separated by “/”), and columns 12-13 list the reduc-

ol doi:10.6342/NTU202001058
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tion on the numbers of LUTs and flip-flops, respectively, of the functional method
over the structural method Finally, columns 14-15 list the CPU time in seconds of
the FSM construction step and the FSM minimization step during functional folding
on each benchmark, respectively. The FSMs obtained by folding adders with the
functional method all reduced to the FSM of the 1-bit carry-save adder shown in
Figure [£.4bl Therefore, the circuit size remains the same after functional folding.
The results demonstrate the circuit size compaction ability of the functional method,
as the numbers of LUTs of functionally folded circuits are significantly smaller than
those of structurally folded circuits and original combinational circuits. However,
the results also signify the limitation of the functional method in computation time.
The FSM of the 256-adder could not be constructed within 10 hours, since this step
relies on BDD-based operations, which could be time-consuming for larger circuits.
On the other, while the FSM construction could be done pretty fast for the voters,
the FSM minimization of 23-voter and 25-voter took over 5 hours to compute,
as MeMin struggled to find a minimum-state FSM. Despite the 2 computational bot-
tlenecks in the FSM construction and minimization steps, the functional method
can usually obtain a more optimal folded circuit when compared to the structural

method in our experiments.

5.2.3 Case Study of Combining Structural and Functional

Folding

From the experimental results, the structural method demonstrates its effectiveness

and scalability in folding large circuits, while the functional method generates better

52
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Figure 5.6: Hierarchical structure of C7552.

solutions with a higher computation cost. To show that the combination of the 2
methods can produce a more optimal result, we conducted a case study on circuit
C7552, which cannot be directly folded with functional method under runtime limit.
The high-level hierarchical structure of C7552 is shown in Figure [5.6] where each
module or subcircuit is represented by a rounded rectangle, and the bit-width of

each wire is annotated in gray on the edge of the connecting modules.

The design of each module was processed and synthesized into a combinational
circuit by Yosys |37], and then be folded by 2 time-frames with either the structural
or functional method. During the folding procedure, the input schedule of a module
is constrained by the output schedule of its fanin modules, that is, the input signal
of a module should be scheduled at a time-frame no earlier than the time-frame it is

produced as an output by other modules. After the 7 modules of C7552 are folded,
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they are connected into an overall folded circuit. Table |5.9|shows the results of fold-
ing each module and the statistics of the combined folded circuit. Columns 2-6 list
the information of the combinational circuit synthesized from each module, includ-
ing the number of primary inputs, primary outputs, AIG nodes and LUTs, along
with its functionality. Columns 7-13 list the information of the folded sequential
circuit, including the number of input pins, output pins, AIG nodes, LUTs, and the
LUT overhead incurred comparing to the original combinational circuit, with the
last column listing the corresponding folding method. The last row of Table lists
the information of the C7552 circuit, when being structurally folded with the same
input/output schedule as the combined folded circuit. The results show that the
combination of the 2 folding methods can indeed generate a better folded circuit
when compared to the one folded only with the structural method, with 55.26% and
28.81% reduction in flip-flop and LUT usage, respectively. Therefore, by combing
the structural and functional methods, we can achieve higher scalability with an

improved optimality in the resulting folded circuits.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the thesis, we have introduced circuit folding as a process of transforming a com-
binational circuit C¢ into a sequential circuit Cg, which after time-frame expansion,
becomes functionally equivalent to Co. We have formulated the time-frame folding
problem, and provided a computational solution based on functional decomposition
for state identification and transition reconstruction. Our proposed algorithm guar-
antees the sequential circuit folded from an iterative combinational circuit is state
minimized. We have further extended the concept of folding for general combina-
tional circuits and formulated a circuit folding approach to time multiplexing on
FPGAs. The structural and functional methods, orthogonal to prior time multi-
plexing methods, have been proposed and implemented to show their potentials to

alleviate the 1/O-pin bottleneck of FPGAs. Circuit folding can be applied to var-
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ious tasks in logic synthesis. Experimental results demonstrated the benefit of the
time-frame folding method in circuit compaction from an iterative combinational
circuit to its sequential counterpart, which can be useful in testbench generation,
sequential synthesis of bounded strategies, and other applications. In addition, the
experiments on time multiplexing suggested the scalability of the structural method
and the optimization power of the functional method. From the case study of com-
bining the 2 folding methods, we saw the potential of the hybrid method that can

achieve both scalability and optimality.

6.2 Future Work

For future work, since the finite state machine (FSM) shares a lot of similarities with
the finite state automata (FSA), we would like to extend the time-frame folding al-
gorithm for applications in automata theory. Given a set of symbolic constraints
of bounded-length strings describing a regular language L, i.e. the characteristic
functions of the accepting (or rejecting) strings, the time-frame folding algorithm,
with slight modification, should be able to derive a symbolic finite automaton [34]
complying with the language L, with the transition condition (depicted in Subsec-
tion serving as the predicate of the transition between 2 states. We would
like to investigate the applicability of the above-described method in the context of
finite automata learning, such as in [2,(13], a finite (symbolic) automaton is learnt by
membership queries and conjectures from an oracle, or as in |10|, a separating finite
automaton of 2 languages is learnt with a similar manner. On the other hand, we

would also like to apply some automata learning procedure, e.g. the L* algorithm |[2],

o7 doi:10.6342/NTU202001058
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to the problem of time-frame folding. The given k-iterative combinational circuit
would serve as the oracle or the teacher, from which an automaton could be learnt
correspondingly. We would then like to compare the performance and effectiveness

of such method with our proposed BDD-based algorithm.

For another future work, we would like to fully automate the hybrid folding
method of combining the structural and functional method for time multiplexing,
especially in the circuit partitioning stage. In the case study we conducted, we relied
on the given high-level hierarchical design and partitioned the circuit into smaller
modules manually. Therefore, it would be more desirable if the partitioning could
be done automatically from a flattened gate-level logic netlist. Moreover, we would
like to investigate other functional decomposition techniques to help mitigate the
high computational cost of BDD-based operations during time-frame and functional

circuit folding.

o8 doi:10.6342/NTU202001058
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