
doi:10.6342/NTU202001058

國立臺灣大學電機資訊學院電子工程學研究所

碩士論文
Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

邏輯電路摺疊：由組合電路轉換至序向電路

Circuit Folding: From Combinational to Sequential Circuits

錢柏均

Po-Chun Chien

指導教授：江介宏 博士

Advisor: Jie-Hong Roland Jiang, Ph.D.

中華民國 109 年 6 月
June, 2020

doi:10.6342/NTU202001058

doi:10.6342/NTU202001058

Acknowledgements

首先，我想感謝我的指導教授江介宏老師。自大學時期專題研究以來，以及研

究所的這兩年的時間裡，教會了我嚴謹的科學方法，以及如何清楚的闡述自己的

想法並寫成論文；在我研究遇到瓶頸時也會與我一同討論，尋找解決方法，並給

予許多方向上的建議。這幾年合作經驗告訴我江教授是一位認真、謙虛且內斂的

學者，有了他的指導，我才能順利的成這篇論文。

接著，我想感謝實驗室的學長們的幫助，念澤、鬍子及鶴騰學長提供了研究上

的建議，子鈞、韋智及家志學長分享了研究生及課業上的經驗，奕凡學長推薦了

台大附近聚餐首選餐廳。另外也得感謝實驗室和我一起打拼的同伴們，彥廷及裕

洲，不但課業上互相扶持，在研究上提供了需許多援助，也幫助我在PS4控制上

得到了微幅的技術提升。總之，謝謝ALCom的所有人，在兩年的研究所期間，一

同欣賞了不少影視巨作（如在幻海奇情中所展現的頑強求生意志至今仍歷歷在

目，著實令人動容），讓平時稍顯枯燥的生活中，增添了不少色彩。

另外，我也想感謝蔡益坤老師、王柏堯老師、陳郁方老師、顏嘉志博士願意擔

任我的口試委員，並給予了我許多寶貴的意見。這篇論文能獲得眾位學者的肯

定，是我的榮幸。

最後，我要感謝我的家人及女友，給予了我許多的支持與肯定，讓我能無後顧

之憂地完成學業。

錢柏均

Po-Chun Chien

National Taiwan University

May 8th, 2020

ii

doi:10.6342/NTU202001058

邏邏邏輯輯輯電電電路路路摺摺摺疊疊疊：：：由由由組組組合合合電電電路路路轉轉轉換換換至至至序序序向向向電電電路路路

研研研究究究生生生: 錢錢錢柏柏柏均均均 指指指導導導教教教授授授: 江江江介介介宏宏宏 博博博士士士

國國國立立立臺臺臺灣灣灣大大大學學學電電電子子子工工工程程程學學學研研研究究究所所所

摘摘摘要要要

在這篇論文中，我們制訂了時框展開（time-frame expansion）之逆操作──時框

摺疊（time-frame folding）。 時框展開為一常用於自動測試圖樣產生及模型檢查

之技術，它會將一序向邏輯電路展開成一組和邏輯電路；而時框摺疊則會進行反

方向的操作，但由於每個時框下的分支電路都可能是不同的，因此它是一個相當

複雜的技術。 時框摺疊可應用於測試平台生成及有界策略一般化的領域中。 我

們提出的演算法可以找到一個最小的有限狀態機，有著與欲折疊的電路相同的輸

入/輸出行為表現。 再者，我們將時框摺疊延伸為功能性電路摺疊，並另外提出

了結構性電路折疊。 藉由上述兩個電路摺疊技術，我們可以於現場可程式化邏輯

閘陣列（FPGA）中達到分時多工之效果，以解決FPGA中輸入及輸出接腳不足

的瓶頸。 大多現有的研究是以實體設計的角度去解決此瓶頸，並設法藉由電路分

割或繞線去減少切點網路之數量。 我們所提出的方法以不同的角度切入，並可以

在帶寬及通量兩者間提供自由的取捨。 實驗的結果顯示出時框摺疊有著電路簡化

的能力；同時也展現了結構性電路摺疊之效力及可拓展性，以及功能性電路摺疊

之優化能力，幫助我們得到更少的查找表及正反器之電路形式。

關關關鍵鍵鍵字字字: 邏輯電路摺疊、函式分解、接腳數簡化、有限狀態自動機最小化、時

框展開、時框摺疊、分時多工

iii

doi:10.6342/NTU202001058

Circuit Folding: From Combinational to Sequential Circuits1

Student: Po-Chun Chien Advisor: Jie-Hong Roland Jiang Ph.D.

Graduate Institute of Electronics Engineering

National Taiwan University

Abstract

In the thesis, we formulate time-frame folding (TFF) as the reverse operation of time-

frame expansion in automatic test pattern generation (ATPG) and (un)bounded

model checking. While the latter converts a sequential circuit into a combinational

one for some expansion bound of k time-frames, the former attempts the opposite,

which can be highly non-trivial as the subcircuit of each time-frame can be distinct.

TFF arises naturally in the context of testbench generation and bounded strategy

generalization. We propose an algorithm that finds a minimum-state finite state

machine consistent with the input-output behavior of the combinational circuit un-

der folding. Furthermore, we extend TFF as functional circuit folding and introduce

structural circuit folding. Through the two folding methods, we formulate a new

approach at the logic level to achieve time multiplexing, which is an important

technique to overcome the bandwidth bottleneck of limited input-output pins in

FPGAs. Most prior work tackles the problem of time multiplexing from a physical

design standpoint to minimize the number of cut nets or Time Division Multiplexing

(TDM) ratio through circuit partitioning or routing. Our formulation is orthogo-

nal to the previous ones and provides a smooth trade-off between bandwidth and

1This thesis is the extension research published in [11,12]

iv

doi:10.6342/NTU202001058

throughput. Empirical evaluation of TFF demonstrates its ability in circuit size

compaction. Experiments also show the effectiveness of the structural method and

improved optimality of the functional method on look-up-table and flip-flop usage.

Keywords: circuit folding, functional decomposition, pin-count reduction, state

minimization, time-frame expansion, time-frame folding, time multiplexing

v

doi:10.6342/NTU202001058

Contents

Verification Letter from the Oral Examination Committee i

Acknowledgements ii

Chinese Abstract iii

Abstract iv

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Time-frame Folding . 2

1.2 Time Multiplexing . 3

1.3 Our Contributions . 6

1.4 Thesis Organization . 7

2 Preliminaries 8

2.1 Finite State Machine . 9

2.2 Combinational Circuit . 9

2.3 Sequential Circuit . 9

vi

doi:10.6342/NTU202001058

Contents

2.4 Time-frame Expansion . 10

2.5 Functional Decomposition . 11

3 Time-frame Folding 15

3.1 Problem Formulation . 15

3.2 Algorithm . 16

3.2.1 State Identification via Functional Decomposition 17

3.2.2 Transition Reconstruction . 19

3.2.3 State Minimization . 21

3.2.4 State Encoding . 23

3.3 Implementation Issues . 23

4 Circuit Folding for Time Multiplexing 25

4.1 Problem Formulation . 25

4.2 Structural Circuit Folding . 26

4.3 Functional Circuit Folding . 29

4.3.1 Pin Scheduling and Iterative Circuit Conversion 29

4.3.2 FSM Construction via Time-Frame Folding 32

4.3.3 FSM Minimization . 33

4.3.4 FSM Encoding . 33

5 Experiments 35

5.1 Time-frame Folding . 35

5.1.1 Fixed Point after TFF . 38

5.1.2 Circuit Size Compaction . 41

5.2 Time Multiplexing via Circuit Folding 42

vii

doi:10.6342/NTU202001058

Contents

5.2.1 Structural Folding on Large Circuits 44

5.2.2 Comparing Structural and Functional Folding 48

5.2.3 Case Study of Combining Structural and Functional Folding . 52

6 Conclusions and Future Work 56

6.1 Conclusions . 56

6.2 Future Work . 57

Bibliography 59

viii

doi:10.6342/NTU202001058

List of Figures

1.1 Time-frame expansion vs. folding. 2

1.2 An illustration of multi-FPGA prototyping system. 4

1.3 The ratio FPGA logic capacity over I/Os (retrieved from [32]). 4

1.4 TDM I/O transmission with ratio 4. 5

2.1 Sequential circuit s27. 11

2.2 Time-frame expanded circuit of s27. 12

2.3 Effect of functional decomposition. 13

2.4 BDD-based functional decomposition. 14

3.1 Computation flow of time-frame folding. 16

3.2 State identification. 19

3.3 State transition graphs of FSMs. 22

4.1 Illustration of structural circuit folding. 27

4.2 Example of 3-bit adder (3-adder) circuit under folding. 28

4.3 Computation flow of functional circuit folding. 30

4.4 FSM by functional circuit folding of 3-adder. 34

5.1 #state vs. #time-frame. 39

ix

doi:10.6342/NTU202001058

List of Figures

5.2 Total runtime vs. #time-frame. 40

5.3 Circuit size after TFF. 43

5.4 Circuit size after structural folding. 48

5.5 Circuit size comparison between structural and functional folding. . . 51

5.6 Hierarchical structure of C7552. 53

x

doi:10.6342/NTU202001058

List of Tables

5.1 Results of TFF on ISCAS and ITC benchmarks. 37

5.2 Results of time-frame folding on homing sequence benchmarks. 38

5.3 Results on folding with fixed point. 41

5.4 Benchmark statistics. 43

5.5 Results of structural circuit folding. 47

5.6 Comparison between structural and functional methods. 50

5.7 Results of folding adders. 55

5.8 Results of folding voters. 55

5.9 Results of folding C7552 with the structural and functional methods

combined. 55

xi

doi:10.6342/NTU202001058

Chapter 1

Introduction

Circuit folding is a process of transforming a combinational circuit CC into a sequen-

tial circuit CS, which after time-frame expansion, becomes functionally equivalent to

CC . The computation of the combinational circuit is folded into multiple iterations

of the resulting sequential circuit. With such folding process, one can reduce the I/O

pint count of the circuit and potentially lower the overall complexity. Circuit fold-

ing finds its applications testbench generation and time multiplexing in multi-FPGA

systems, which are crucial to the field of logic synthesis, and yet remains relatively

unstudied. In this chapter, we introduce the motivation and the application field

of the thesis in Section 1.1 and 1.2, highlight our contributions in Section 1.3, and

provide the overall thesis structure in Section 1.4.

1

doi:10.6342/NTU202001058

1.1. Time-frame Folding

Figure 1.1: Time-frame expansion vs. folding.

1.1 Time-frame Folding

Time-frame folding (TFF) is the reverse operation of time-frame unfolding (TFU), or

time-frame expansion as illustrated in Figure 1.1. While TFU is a well-known tech-

nique commonly used in, e.g., automatic test pattern generation (ATPG) [36] and

(un)bounded model checking of sequential circuits [5], TFF remains largely unstud-

ied. In fact, TFF finds its natural applications. For example, to test a sequential

design, one may look for a testbench that produces some set of desired test pat-

terns of length-bounded input-output sequences. The testbench can be represented

directly by a large combinational circuit, corresponding to a time-frame expanded

version of a sequential circuit, or represented more compactly by a sequential circuit.

For another example, in model-based testing of software systems [19, 30], in state

identification [21], and in system initialization [28], one may be asked to compute

(non-adaptive or adaptive) homing, distinguishing, and/or synchronizing sequences.

These problems can be formulated as quantified Boolean formula (QBF) [6] solving

of strategy derivation, e.g., in [35], that computes the intended sequence. Again,

the homing, distinguishing, or other strategies under synthesis can be represented

directly by a large combinational circuit or more compactly by a sequential circuit.

2

doi:10.6342/NTU202001058

1.2. Time Multiplexing

However, unlike the straightforward derivation of TFU from a given sequential

circuit, TFF can be highly non-trivial because the time-frame expanded combina-

tional circuit may not exhibit a common circuit structure shared among different

time-frames. Perhaps it is this difficulty that makes TFF largely unaddressed. In

this work, we formulate the TFF problem and provides a general solution that makes

no structure assumption on the combination circuit under time-frame folding.

To the best of our knowledge, this work is the first to address the time-frame fold-

ing issue. Most related prior work on time-frame issues centered around unfolding,

e.g. in [24]. While the prior work converts a sequential circuit into a combina-

tional one with respect to some expansion bound k time-frames, our attempt is the

opposite. Regarding our method, we rely on multiple-output functional decompo-

sition [18] to identify equivalent states as part of our computation flow. A similar

technique has been applied in sequential equivalence checking [17].

1.2 Time Multiplexing

The concept of folding is then further extended for general combinational circuits to

tackle the time multiplexing problem in FPGAs. Multi-FPGA boards are commonly

used for system emulation [25] and prototyping as illustrated in Figure 1.2. As the

logic capacity, i.e., the number of look-up-tables (LUTs), of an FPGA increases

with new technology nodes, the growth in I/O pin count remains relatively slow.

The ratio of FPGA logic capacity over I/O over the past few years is plotted in

Figure 1.3. This unbalance growth rate makes the number of available I/O pins for

each FPGA relatively small compared to the number of required inter-chip signals,

3

doi:10.6342/NTU202001058

1.2. Time Multiplexing

Figure 1.2: An illustration of multi-FPGA prototyping system.

Figure 1.3: The ratio FPGA logic capacity over I/Os (retrieved from [32]).

which leads to a significant underutilization of logic resources [16,32].

To overcome the bottleneck of limited inter-chip I/O bandwidth, time division

multiplexing (TDM) [4] was proposed, where physical pins and wires are multiplexed

among multiple signals, increasing the effective number of available logic pins. Under

this scheme, the system requires two separate clocks, a system clock, on which

the FPGAs operate, and a faster I/O clock, on which the inter-chip signals are

propagated. The ratio of the system clock to the I/O clock is called the TDM ratio r.

4

doi:10.6342/NTU202001058

1.2. Time Multiplexing

Figure 1.4: TDM I/O transmission with ratio 4.

Essentially, r times the I/O bandwidth of signals can be transmitted during a system

clock. Figure 1.4 illustrates an example of I/O transmission between two FPGAs

with TDM ratio 4. The TDM technique dramatically increases the capability of

multi-FPGA systems. However, it reduces the system throughput as the system

clock is operating at a lower frequency. Most of the related work, e.g., [9], viewed

this problem from a physical design standpoint and tried to minimize the number

of cut nets, which corresponds to the number of inter-chip signals, passing through

each FPGA. Another line of research, e.g., [22,33], considers scheduling and temporal

partitioning for time-multiplexed FPGAs. They partitioned a combinational circuit

into several pipeline stages for time multiplexing. However, the approach cannot

control the pin-count reduction as it is determined by the circuit structure. In

[15,23], the problem of pin assignment during pin multiplexing, which is the mapping

between logic inputs and outputs to the physical pins, was investigated. The pin-

count reduction issue was not addressed.

In this work, we formulate a new orthogonal approach to achieve time multiplex-

ing at the logic level. The proposed structural and functional methods can directly

5

doi:10.6342/NTU202001058

1.3. Our Contributions

reduce the number of input pins of a logic circuit as desired by folding the computa-

tion of the circuit. The resulting circuit will satisfy the input pin count constraint at

the cost of additional flip-flops storing required information and additional control

circuitry for intended computation. This new approach does not require dynamic re-

configuration of the FPGA, unlike [22,33]. Neither does it require an additional I/O

clock as TDM, the I/O transmission can work in synchronization with the system

clock.

In the literature, the term “folding” is used elsewhere. In [27], a folding trans-

formation technique was proposed to schedule and bind a data-flow graph onto

a hardware architecture, where folding refers to the process of executing multiple

algorithmic operations in a hardware unit. In [14], a folding technique was pro-

posed to identify structurally identical subcircuits to share gate implementation

using dual-edge-triggered flip-flops for time multiplexing. Their primary objective

was to minimize the circuit area after technology mapping, while ours is to reduce

the input pin count.

1.3 Our Contributions

This thesis is the extension research published in [11, 12]. The main results of this

work include:

1. We motivate and formulate the problem of time-frame folding, and propose an

algorithm that finds a minimum-state finite state machine consistent with the

input-output behavior of the combinational circuit under folding.

6

doi:10.6342/NTU202001058

1.4. Thesis Organization

2. We formulating a new time multiplexing scheme, and propose the structural and

functional circuit folding methods, that convert a combinational circuit into a

sequential one with equivalent input-output behavior modulo time-frame expan-

sion.

3. We evaluate the proposed TFF algorithm and show the computational viability

and its ability in circuit size compaction for potential use in different application

domains. We conduct experiments on the proposed structural and functional

folding methods, and demonstrate their effectiveness in input pin reduction to

alleviate the I/O pin bottleneck of FPGAs.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides the essential prelim-

inaries. In Chapter 3, we formulate the problem of time-frame folding and present

our algorithmic solution. The problem of time multiplexing is then formulated in

Chapter 4, along with the details of the proposed structural and functional methods.

Chapter 5 evaluates the experimental results, and finally Section 6 concludes this

thesis.

7

doi:10.6342/NTU202001058

Chapter 2

Preliminaries

In the sequel, sets are denoted by upper-case letters, e.g. S; the elements in a set

are in lower-case letters, e.g. a ∈ S; the cardinality of a set S is denoted as |S|. A

partition P of a set S into non-empty subsets Si ⊆ S, for i = 1, . . . , k, is denoted

by P = {S1|S2|...|Sk}, where Si ∩ Sj = ∅, ∀i 6= j and
⋃
iSi = S. Each Si is a

called a cell of P . Let P and P ′ be two partitions of a set S. Partition P is said

to be a refinement of P ′, if si, sj ∈ S are in different cells of P ′, then si, sj ∈ S

are in different cells of P . Note that the refinement relation is not symmetric, i.e.,

that P is a refinement of P ′ does not imply that P ′ is a refinement of P . For a

set of Boolean variables X, its set of truth assignments is denoted by [[X]], e.g.,

[[X]] = {(0, 0), (0, 1), (1, 0), (1, 1)} for X = {x1, x2}. Boolean negation, conjuction,

and disjunction are denoted by ¬ or overline, ∧ or ·, and ∨ or +, respectively.

8

doi:10.6342/NTU202001058

2.1. Finite State Machine

2.1 Finite State Machine

A finite state machine (FSM) can be described by a six-tuple (I, O, Q, q1, ∆, Ω),

where I is the input alphabet, O is the output alphabet, Q 6= ∅ is a non-empty

finite set of states, q1 ∈ Q is the initial state, ∆ : Q× I → Q is the state transition

function, Ω : Q× I → O is the output function. A machine is completely specified

if, for every state in Q under every input, its output and next state are defined;

otherwise, it is incompletely specified. An FSM can be alternatively represented as

a state transition graph.

2.2 Combinational Circuit

A combinational circuit CC is a directed acyclic graph with vertices V and edges

E ⊆ V × V . Two subsets I, O ⊂ V are identified as the primary inputs (PIs) and

outputs (POs), respectively. For (u, v) ∈ E, we call u is a fanin of v, and v is a

fanout of u. Each vertex v ∈ V is associated with a Boolean variable and with a

Boolean function expressed in terms of its fanin variables. The support set of v is

the set of PIs that can reach v through a path consisting of edges in E.

2.3 Sequential Circuit

A sequential circuit CS is a combinational circuit augmented with state-holding

elements (flip-flops), each of which takes an output of the combinational circuit as

9

doi:10.6342/NTU202001058

2.4. Time-frame Expansion

its input and produces an output to an input of the combinational circuit. An

FSM can be implemented by a sequential circuit, which consists of combinational

logic netlists realizing the transition and output functions of the FSM and flip-flops

holding current state values.

2.4 Time-frame Expansion

The operation of a sequential circuit can be seen as an iterative combinational circuit

that repeats the same computation but taking timestamped inputs. In time-frame

expansion/unfolding, a sequential circuit is unrolled to construct an iterative com-

binational circuit. This is done by cascading duplicated sequential circuits, where

the input and output of the flip-flops in the adjacent time-frames are connected

together. In this paper, the initial values of the flip-flops (initial state) is constant-

propagated throughout the time-frames. Therefore, after expansion, the primary

output functions of each time-frame in the expanded circuit can be viewed as a

purely combinational logic which depends on the primary inputs of all the previous

time-frames.

Example 2.1 Figure 2.1 shows the circuit structure of s27, where xi denotes the

ith primary input variable, y denotes the primary output variable, and zi and z′i

denote the current- and next-state variables, respectively, of the ith flip-flop. Let vt

denote the variable v instantiated at the tth time-frame. Figure 2.2a shows the

circuit of s27 after three time-frames of expansion, and Figure 2.2b shows the

same circuit after simplification with constant propagation of the initial state values

(z01 , z
0
2 , z

0
3) = (0, 0, 0). Note that after the time-frame expansion all primary output

10

doi:10.6342/NTU202001058

2.5. Functional Decomposition

Figure 2.1: Sequential circuit s27.

functions are purely combinational, and after further circuit simplification the state

transition functions cannot be clearly identified. In the following, the timestamp of

the input/output of an iterative circuit is denoted by superscript letters. E.g., for a

sequential circuit with input x and output y, the timestamped input and output of

the iterative circuit is denoted as x1, . . . , xt and y1, . . . , yt, respectively.

2.5 Functional Decomposition

Given a single-output Boolean function f(X), the functional decomposition [3, 29]

problem asks to re-express f(X) = fµ(Xµ, fλ1(Xλ), . . ., fλk(Xλ)), where Xλ and Xµ

are called the bound set and free set variables, respectively, which form a partition

on X = {Xλ|Xµ}.2 Let Fλ(Xλ) = {fλ1(Xλ), . . . , fλk(Xλ)}. To avoid trivial decom-

position, it is required that |Fλ| < |Xλ|. Figure 2.3 illustrates the structural effect

of functional decomposition.

2In time-frame folding application, only disjoint decomposition, i.e., Xλ ∩Xµ = ∅, needs to be
considered.

11

doi:10.6342/NTU202001058

2.5. Functional Decomposition

(a
)
C
ir
cu
it

w
it
h
re
gu

la
r
du

pl
ic
at
io
n.

(b
)
C
ir
cu
it

w
it
h
in
it
ia
ls

ta
te

pr
op

ag
at
io
n
an

d
si
m
pl
ifi
ca
ti
on

.

F
ig
ur
e
2.
2:

T
im

e-
fr
am

e
ex
pa

nd
ed

ci
rc
ui
t
of

s2
7.

12

doi:10.6342/NTU202001058

2.5. Functional Decomposition

Figure 2.3: Effect of functional decomposition.

Functional decomposition can be defined for multiple single-output functions

f1(X), . . ., fm(X), and considered as decomposing a multiple-output function F (X)

= (f1(X), . . ., fm(X)). In [18], a technique called hyperfunction encoding is in-

troduced to encode a multiple-output function into a single-output function with

dlog2 |F |e auxiliary pseudo input variables. E.g., for m = 4, two auxiliary variables

A = {α1, α2} can be used to build the hyperfunction h(X,A) = ¬α1¬α2f1(X) +

¬α1α2f2(X) + α1¬α2f3(X) + α1α2f4(X). Thereby, a single-output functional de-

composition algorithm can be applied to decompose a multiple-output function.

Functional decomposition can be achieved based on the reduced ordered binary

decision diagram (ROBDD) [8, 20]. In BDD-based decomposition, the ROBDD of

the function f(X) under decomposition is built with the variable ordering constraint

that the bound set variables Xλ are ordered above the free set variables Xµ. The cut

set of the ROBDD is the set of BDD nodes controlled by free set variables that are

pointed to by some edge from a node controlled by a bound set variable. Essentially,

for c being the cut set size, then |Fλ| ≥ dlog2 ce.

Example 2.2 Figure 2.4 shows the BDD-based decomposition for function y2 of

the time-frame expanded circuit s27. The cut set {n1, n2, n3} is induced by setting

Xλ = {x11, x12, x13, x14} and Xµ = {x21, x22, x24}. Necessarily two bits are needed to

13

doi:10.6342/NTU202001058

2.5. Functional Decomposition

Figure 2.4: BDD-based functional decomposition.

re-encode the bound set variables to distinguish the three cut set nodes. Hence,

|Fλ| ≥ 2.

14

doi:10.6342/NTU202001058

Chapter 3

Time-frame Folding

Time-frame folding is the reverse operation of time-frame unfolding or time-frame

expansion. In this chapter, we describe the derivation of the minimum-state FSM

from folding an iterative (time-frame expanded) combinational circuit. The chap-

ter is organized as follows. The problem of time-frame folding is formulated in

Section 3.1. Our algorithmic solution is then presented in Section 3.2, and imple-

mentation improvement in Section 3.3.

3.1 Problem Formulation

The problem of time-frame folding can be stated as follows.

Problem Statement 3.1 (Time-Frame Folding)

Given a k-iterative combinational circuit CC with inputs X1, . . . , Xk for X t =

{xt1, . . . , xtn} and outputs Y 1, . . . , Y k for Y t = {yt1, . . . , ytm}, find a sequential cir-

15

doi:10.6342/NTU202001058

3.2. Algorithm

Figure 3.1: Computation flow of time-frame folding.

cuit CS with inputs X = {x1, . . . , xn} and outputs Y = {y1, . . . , ym} such that the

input-output behavior of CS within the first k time-frames is the same as that of CC .

Moreover, the number of states of CS is minimized.

Note that the statement makes no assumption on the circuit structure of CC but

only its inputs and outputs in an iterative form, crucial for time-frame folding.

3.2 Algorithm

The computation flow of the TFF algorithm is shown in Figure 3.1. Given as input

an iterative combinational circuit CC with inputs X1, . . ., XT for X t = {xt1, . . . , xtn}

and outputs Y 1, . . ., Y T for Y t = {yt1, . . . , ytm}, the algorithm returns a sequential

circuit with inputs X = {x1, . . . , xn} and outputs Y = {y1, . . . , ym} consistent with

CC in T time-frames. It consists of the following steps: 1) state identification by

functional decomposition, 2) state transition reconstruction, 3) state minimization,

and 4) state encoding. The steps are detailed in the following subsections.

16

doi:10.6342/NTU202001058

3.2. Algorithm

3.2.1 State Identification via Functional Decomposition

Given an iterative combinational circuit CC with inputs X1, . . . , XT for X t = {xt1,

. . ., xtn} and outputs Y 1, . . . , Y T for Y t = {yt1, . . . , ytm}, we show that the notion

of states at time-frame t is induced by the output functions of Y t+1, . . . , Y T . Note

that the outputs Y t observed at time t induce an equivalence relation on the set

of input assignments [[X1 ∪ . . . ∪X t]]. Effectively, the equivalence relation forms

a partition on [[X1 ∪ . . . ∪X t]]. Assume that the partition on [[X1 ∪ . . . ∪X t]] in-

duced by the equivalence relation imposed by the outputs Y t+1, . . . , Y T has k cells

(equivalence classes). Then we know the signals communicating from iteration t to

iteration t + 1 in circuit CC (i.e., the information of inputs X1, . . . , X t needed to

compute outputs Y t+1, . . . , Y T) must have at least dlog2 ke bits. In the functional

decomposition viewpoint of Figure 2.3, by decomposing the hyperfunction f of the

output functions of Y t+1 ∪ . . . ∪ Y T with bound set variables Xλ = X1 ∪ . . . ∪ X t

and free set variables Xµ = X t+1 ∪ . . . ∪ XT ∪ A, where A is the set of pseudo

input variables introduced to encode functions Y t+1 ∪ . . . ∪ Y T , the number of bits

needed to communicate from Fλ to fµ in the picture of Figure 2.3 is at least dlog2 ke.

Essentially the k equivalence classes correspond to the minimum states needed to

distinguish the input assignments [[X1 ∪ . . . ∪X t]] for the outputs Y t+1, . . . , Y T to

produce correct valuation. Let Qt = {qt1, ..., qtk} be the states representing the k

equivalence classes, and let τ t = {τqt1 , . . . , τqtk} be the set of transition conditions,

that is, characteristic functions, each characterizing a set of equivalent input assign-

ments in an equivalence class of [[X1 ∪ . . . ∪X t]]. Then Qt and τ t can be obtained

from ROBDD-based functional decomposition by noting that Qt corresponds to the

17

doi:10.6342/NTU202001058

3.2. Algorithm

cut set and τ t corresponds to the path conditions from the root node leading to the

cut set nodes. In the sequel, we let St = {(qt1, τqt1), . . . , (q
t
k, τqtk)} be the set of state

and transition condition pairs at time t.

Example 3.1 To demonstrate how Qt and τ t are obtained from ROBDD-based

functional decomposition, we take y2 in Figure 2.4 as an example. To compute S1,

we build the hyperfunction h = αy2 + ¬αy3 of the output functions y2 and y3 as

illustrated in Figure 3.2a. By performing functional decomposition on h, we obtain

S1 = {(q11, τq11), (q12, τq12), (q13, τq13), (q14, τq14)}, where τ 1 = {¬x12x14, ¬x11(x12x13+¬x12¬x14),

x11(x
1
2x

1
3 + ¬x12¬x14), x12¬x13}.

It should be noted that to compute S1 both functions y2 and y3 are needed.

Considering only y2 for the derivation of S1 would be flawed due to the fact that two

states in Q1 that seem to be equivalent at output y2 may possibly be distinguished

at output y3. Essentially the partition induced by both y2 and y3 is a refinement of

the partition induced by y2 only.

For S2 derivation, functional decomposition on y3 should be performed as is

illustrated in Figure 3.2b.

Given an iterative combinational circuit CC , the state identification procedure for

computing S0, . . . , ST is outlined in Algorithm 1. In line 1, S0 and ST are singleton

sets as Q0 has a single initial state q01 and QT has a single don’t-care destination

state qT∗ . Moreover, the transition conditions to q01 and qT∗ are tautologies. In

lines 2-8, St for t = 1, . . . , T − 1 is computed through functional decomposition in

line 7 on the hyperfunction encoded in line 4. Procedure HyperEncode encodes the

output functions Y t+1, ..., Y T into a single-output function h using the set A of fresh

18

doi:10.6342/NTU202001058

3.2. Algorithm

(a) Functional decomposition for S1 derivation. (b) Functional decomposition for S2 deriva-
tion.

Figure 3.2: State identification.

new variables α1, . . . , αk for k = dlog2(|Y t+1| + · · · + |Y T |)e. Procedure Decompose

performs functional decomposition on the hyperfunction h and extract the cut set

and corresponding transition conditions.

Algorithm 1 StateIdentify
Input: CC with inputs X1, ..., XT and outputs Y 1, ..., Y T

Output: {S0, S1, ..., ST}
1: S0 := {(q01, 1)}; ST := {(qT∗ , 1)};
2: for t = 1, ..., T − 1 do
3: k := dlog2(|Y t+1|+ · · ·+ |Y T |)e;
4: h := HyperEncode(Y t+1 ∪ ... ∪ Y T , A = {α1, . . . , αk});
5: Xλ := X1 ∪ ... ∪X t;
6: Xµ := X t+1 ∪ ... ∪XT ∪ A;
7: St := Decompose(h,Xλ, Xµ);
8: end for
9: return {S0, S1, ..., ST};

3.2.2 Transition Reconstruction

With the sets S0, . . . , ST of state and transition condition pairs being obtained, the

next step is to determine the transitions among the states and construct the state

transition graph.

19

doi:10.6342/NTU202001058

3.2. Algorithm

Given an iterative combinational circuit CC , and the sets S0, . . . , ST as input,

Algorithm 2 computes, for every pair (qt−1i , qtj) of states in adjacent two time-frames,

the input condition and output response under the transition from qt−1i to qtj. Es-

sentially, the input transition condition can be characterized by the QBF

ϕti,j = ∃X1, . . . , X t−1.τqt−1
i
∧ τqtj (3.1)

and the output transition response can be characterized by the set of QBFs

ψti,k = ∃X1, . . . , X t−1.τqt−1
i
∧ ytk (3.2)

for ytk ∈ Y t. In line 5, the procedure TransitionTuple returns the four-tuple (qt−1i ,

qtj, ϕti,j, {ψti,k | ytk ∈ Y t}). The algorithm returns the collected four-tuples R for all

state transitions. According to R, one can construct an FSM.

Algorithm 2 TransitionReconstruct
Input: CC , {S0, . . . , ST}
Output: transition four-tuples R
1: R := ∅;
2: for t = 1, ..., T do
3: foreach (qt−1i , τqt−1

i
) ∈ St−1 do

4: foreach (qtj, τqtj) ∈ S
t do

5: R := R ∪ TransitionTuple(τqt−1
i
, τqtj , Y

t);
6: end for
7: end for
8: end for
9: return R;

Example 3.2 To illustrate, we derive the input condition for the transition from

q11 to q21 shown on Figure 3.3a, where τq11 = ¬x12x14, τq21 = ¬x12x14 · (¬x21(¬x22 + x23) +

x21¬x22x24)+¬x11(x12x13+¬x12¬x14) ·¬x22x24. y2 = (¬x12x14x21+¬x11(¬x12¬x14+x12x
1
3)) ·(x22+

¬x24) + x11(x
1
2 + ¬x14) + ¬x11x12¬x13. The input transition condition and the output

20

doi:10.6342/NTU202001058

3.2. Algorithm

transition response can be derived by: ϕ2
1,1 = ∃X1.τq11∧τq21 = ¬x21(¬x22+x23)+x21¬x22x24

and ψ2
1 = ∃X1.τq11 ∧ y

2 = x21(x
2
2 + ¬x24), which corresponds to the edge labeled with

”00--/0, 011-/0, 10-1/0” between q11 and q21 in Figure 3.3a.

3.2.3 State Minimization

Notice that although by functional decomposition we guarantee that |St| is min-

imum, the FSM constructed from R may not be state minimum. It is because

equivalent states in different time-frames are not yet considered. In the FSM de-

rived from time-frame folding, there is a unique initial state q01 and final don’t-care

state qT∗ . As the FSM is incompletely specified at state qT∗ , the flexibility provides

room for state minimization. In our implementation, we apply the SAT-based exact

minimization algorithm MeMin [1] for FSM simplification.

Example 3.3 The FSM in Figure 3.3a can be minimized to that in Figure 3.3b.

The number of states reduces from 10 (including the unspecified state q∗) to 5.

In Figure 3.3b, each state is annotated with its compatible states in Figure 3.3a.

In each time-frame except for the last, the states being identified are minimized

such that none of them can be merged into the same state. For instance, the states

reached at the first time-frame q11, q12, q13 and q14 in Figure 3.3a correspond to different

states q′3, q′2, q′5 and q′1, respectively, in Figure 3.3b. Note that the minimized FSM

in Figure 3.3b would not necessarily be equivalent to that of the original sequential

circuit s27 in Figure 3.3c, and more details are discussed in Subsection 5.1.1.

21

doi:10.6342/NTU202001058

3.2. Algorithm

(a) FSM from folding 3 time-frames (before state minimization).

(b) FSM from folding 3 time-frames (after state minimization).

(c) FSM of original s27 circuit.

Figure 3.3: State transition graphs of FSMs.

22

doi:10.6342/NTU202001058

3.3. Implementation Issues

3.2.4 State Encoding

To transform an FSM into a sequential circuit, a final state-encoding step has to be

performed. Let Q be the state set of the FSM. In our implementation, we try two

different encoding schemes: 1) natural encoding, which uses dlog2 |Q|e bits, and 2)

one-hot encoding, which uses |Q| bits, each of which represents a state in Q.

3.3 Implementation Issues

To improve state identification, we make two modifications to the StateIdentify

algorithm:

• Reverse-chronological order enumeration: The index t in the for-loop in line 2

enumerates from 1 to T −1. As t increases, the number |Y t∪ ...∪Y T | of functions

that have to be encoded decreases. Also there is a huge overlap of functions to be

encoded at two consecutive time-frames t and t+ 1, which is {Y t+1, ..., Y T}. As a

result, by reversing the enumeration order for t from T −1 to 1, the hyperfunction

h can be built incrementally by adding Y t to h one at a time in each iteration.

• Re-encoding hyperfunction: Now that the state and transition condition pairs

identified at each time-frame are constructed in a reverse-chronological order,

after we obtain St by decomposing the hyperfunction h built at time frame t+ 1,

the variable in X t+1 is no longer relevant in deciding partition of [[X1 ∪ ... ∪X t]].

Hence, we can re-encode h into a more compact representation with less variables

to reduce the circuit size. Essentially the variables X t+1 in h can be replaced with

23

doi:10.6342/NTU202001058

3.3. Implementation Issues

a new set of variables of size dlog2 |St|e in a way preserving the cut set nodes of h.

Therefore h can be represented more compactly. The re-encoded hyperfunction is

then be passed down to the next iteration.

24

doi:10.6342/NTU202001058

Chapter 4

Circuit Folding for Time

Multiplexing

In this chapter, we further extend the concept of “folding” for general combinational

circuits, not exclusively for the iterative ones as described in Chapter 3, to achieve

time multiplexing. In addition to the functional folding method, which exploits the

time-frame folding technique, we also introduce the structural method, which only

requires a traversal through the circuits for the intended objective. The chapter is

organized as follows. The problem of time multiplexing is formulated in Section 4.1.

Our algorithmic solutions are then presented in Sections 4.2 and 4.3.

4.1 Problem Formulation

The problem of circuit folding for time multiplexing can be stated as follows.

25

doi:10.6342/NTU202001058

4.2. Structural Circuit Folding

Problem Statement 4.1 (Circuit Folding for Time Multiplexing)

Given a folding number T and a combinational circuit CC with inputs U = {u1, . . . , un}

and outputs W = {w1, . . . , wn′}, we are asked to fold CC into a sequential circuit CS

with inputs X = {x1, . . . , xm} and outputs Y = {y1, . . . , ym′}, where m = dn/T e

and m′ ≤ n′, such that unfolding (expanding) CS by T time-frames yields a com-

binational circuit C ′C with inputs (X1, . . . , XT) and outputs (Y 1, . . . , Y T) that is

functionally equivalent to CC under some proper association of their inputs and out-

puts. That is, CS achieves time multiplexing by taking T clock cycles, each taking

m partial inputs, to execute the computation of CC .

In the sequel, we assume without loss of generality that n is divisible by T as one

can always add dummy inputs (with no fanouts) to CC to satisfy the divisibility.

We present two methods, structural circuit folding and functional circuit folding,

for time multiplexing as follows.

4.2 Structural Circuit Folding

To find the sequential circuit CS of the circuit folding problem of Section 4.1, let

the inputs U of the given combinational circuit CC be divided into T groups: X1 =

{u1, . . . , um}, . . . , XT = {u(T−1)×m, . . . , un}. We then traverse the logic gates of CC

in a topological order by T iterations. At iteration t, for t = 1, . . . , T , a topological

traversal is initiated at the inputs X t. A gate will be visited if and only if all of

its fanins have been visited. On a visit to a gate in CC , a corresponding gate will

be duplicated in CS. If a primary output of CC is visited, then it will be scheduled

26

doi:10.6342/NTU202001058

4.2. Structural Circuit Folding

Figure 4.1: Illustration of structural circuit folding.

to output Y t at time-frame t in CS. At the end of each iteration, the gates in the

frontier of the traversal is collected, each of which has a newly introduced flip-flop

in CS to store its value. After T iterations, all the gates in CC have been visited.

Moreover, additional flip-flops are introduced to track the time-frame information,

either with a dlog2(T)e-bit counter using binary encoding or a T -bit shift register

using one-hot encoding. The corresponding control logic is then added to select

the correct output at each time-frame. Finally, we can obtain a sequential circuit

CS with inputs X = {x1, . . . , xm}. The number of outputs of CS is determined

by the maximum number of outputs being scheduled in a time-frame among the

T time-frames. Figure 4.1 illustrates the iterative-layering procedure of structural

circuit folding. Different colors in the figure indicate the gate traversal at different

time-frames. The frontier of each traversal is circled by a rounded rectangle and

their signals are stored in the flip-flops, serving as the pseudo inputs to the circuit

traversed in the next iteration.

27

doi:10.6342/NTU202001058

4.2. Structural Circuit Folding

Figure 4.2: Example of 3-bit adder (3-adder) circuit under folding.

Example 4.1 To illustrate the procedure of structural circuit folding, we take the

3-bit adder in Figure 4.2 as an example. The adder has inputs U = A∪B and outputs

W = {s0, s1, s2, cout}, where A = {a0, a1, a2} and B = {b0, b1, b2} are the 2 input

3-bit numbers, with ai and bi being the ith bits of A and B, respectively, si the ith

summation bit, and cout the carry-out bit. The inputs are grouped as X1 = {a0, b0},

. . . , X3 = {a2, b2}. The gates in Figure 4.2 marked in green, blue, and orange

correspond to the gates visited at the first, second, and third iteration, respectively.

A total of 5 flip-flops are introduced, 2 for storing the intermediate information of

g2 and g8, which are essentially the carry bits of the first two iterations, and 3 for

storing the time-frame information as a shift register. The number of outputs of CS

is determined by |Y 3| = 2. The outputs are scheduled as follows: Y 1 = {s0, null},

Y 2 = {s1, null}, and Y 3 = {s2, cout}, where null denotes a dummy output. With

the control logic being added for selecting the correct output at each time-frame,

CS can be synthesized to a circuit with 2 inputs, 2 outputs, 5 flip-flops, and 23 AIG

nodes (or 8 6-input LUTs) [7].

28

doi:10.6342/NTU202001058

4.3. Functional Circuit Folding

Although the structural circuit folding method is efficient and scalable to large

circuits, the constructed sequential circuit CS can be sub-optimal. Taking 3-adder

of Figure 4.2 for example, we know that ultimately CS can be implemented with an

1-bit carry-save adder, consisting of only 1 input, 2 outputs, 1 flip-flop, and 7 AIG

nodes (for a full adder implementation). It motivates the functional circuit folding

approach as we present next.

4.3 Functional Circuit Folding

We exploit the time-frame folding (TFF) technique in Chapter 3 to the time multi-

plexing problem. Note that the original TFF cannot be applied directly because it

assumes the given combinational circuit under folding is in an iterative form. How-

ever, time multiplexing must work for general combinational circuits not necessarily

iterative ones. Below we detail the functional circuit folding method.

As shown in Figure 4.3, the functional circuit folding algorithm consists of three

main computation steps: 1) pin scheduling, 2) FSM construction via time-frame

folding, 3) FSM minimization, and 3) FSM encoding, to be presented in the following

subsections.

4.3.1 Pin Scheduling and Iterative Circuit Conversion

Given a folding number T and a combinational circuit CC with inputs U = {u1,

. . ., un} and outputs W = {w1, . . . , wn′}, the pin scheduling procedure permutes

the inputs and outputs (and possibly adds dummy inputs and outputs) to convert

29

doi:10.6342/NTU202001058

4.3. Functional Circuit Folding

Figure 4.3: Computation flow of functional circuit folding.

CC into a virtual T -iterative combinational circuit C ′C with inputs X1, . . . , XT for

X t = {xt1, . . . , xtm} and outputs Y 1 . . . Y T for Y t = {yt1, . . . , ytm′}, where m = dn/T e

and m′ ≤ n′. The circuit after scheduling must satisfy the property that every

primary output wi ∈ W is scheduled at some iteration t while its input supports are

scheduled in iterations t′ ≤ t.

Algorithm 3 shows a heuristic scheduling procedure of outputs W = {w1, . . .,

wn′} with respect to a folding number T . In line 1, the number m of inputs in one

circuit iteration is calculated. In line 2, the set of outputs W is sorted according

to their support sizes in an ascending order. In line 3, the sets Usup , Y
1, . . . , Y T

are initialized to be empty. In lines 4-8, the loop goes over each output wi to

determine its iteration. In line 5, the support set of wi is added to Usup . In line 6,

the earliest available iteration t for wi is calculated. In line 7, wi is assigned to Y t.

Finally, the output schedule is returned in line 9. Note that to make the number of

outputs scheduled at each iteration identical, null (dummy) outputs are inserted to

Y 1, . . . , Y T . In our implementation, we also try to minimize the number of outputs

by prolonging some of the scheduled outputs.

With the outputs being scheduled, the inputs W = {w1, . . . , wn′} can be sched-

30

doi:10.6342/NTU202001058

4.3. Functional Circuit Folding

Algorithm 3 OutputSchedule
Input: CC with inputs U = {u1, . . . , un} and outputs W = {w1, . . . , wn′}, folding

number T
Output: output schedule Y 1, . . . , Y T

1: m := n/T ;
2: SortAscend(W);
3: Usup , Y

1, . . . , Y T := ∅;
4: foreach wi in W do
5: Usup := Usup ∪ Support(wi);
6: t := d|Usup|/me;
7: Y t := Y t ∪ {wi};
8: end for
9: return (Y 1, . . . , Y T);

uled accordingly as outlined in Algorithm 4. LetXque be a queue to store the ordered

inputs. In line 1, Xque is initialized as an empty queue. In lines 2-6, the loop iterates

through each scheduled outputs Y t to fill in the queue. In line 3, the supports Xsup

of Y t that have not yet been scheduled during the previous iterations are collected

in queue Xsup . In line 4, an optional optimization step is performed to reorder Xsup .

Since the FSM construction algorithm in the later step relies on BDD-based opera-

tions, a smaller BDD size of C ′C would help to reduce the execution time. Therefore,

BDD variable reordering with symmetric sifting [26] technique is applied to Xsup to

minimize the BDD size of outputs Y t of CC . In line 5, Xsup is pushed into the queue

Xque . In line 7, Xque is evenly divided into T groups X1, . . . , XT , which are finally

returned in line 8.

Example 4.2 Consider the 3-adder example in Figure 4.2. After pin scheduling,

we have outputs Y 1 = {s0, null}, Y 2 = {s1, null}, Y 3 = {s2, cout}, and inputs

X1 = {a0, b0}, X2 = {a1, b1}, X3 = {a2, b2}. Note that the null (dummy) outputs

are inserted to make the number of outputs scheduled at each iteration identical.

31

doi:10.6342/NTU202001058

4.3. Functional Circuit Folding

Algorithm 4 InputSchedule
Input: CC with inputs U = {u1, . . . , un} and outputs W = {w1, . . . , wn′}, folding

number T , and output schedule Y 1, . . . , Y T

Output: input schedule X1, . . . , XT

1: Xque := ∅;
2: for t = 1, . . . , T do
3: Xsup := Support(Y t) \ Xque ;
4: Xreord := BddSymSift(CC , t, Xsup);
5: Xque := Append(Xque , Xreord);
6: end for
7: (X1, . . . , XT) := Split(Xque , T);
8: return (X1, . . . , XT);

4.3.2 FSM Construction via Time-Frame Folding

Given an T -iterative combinational circuit C ′C with inputs X1, . . . , XT for X t =

{xt1, . . . , xtm} and outputs Y 1, . . . , Y T for Y t = {yt1, . . . , ytm′}, the TFF algorithm

in Chapter 3 can be applied to construct an FSM with inputs X = {x1, . . . , xm}

and outputs Y = {y1, . . . , ym′}, which has the same input-output behavior as C ′C

within the T bounded time-frames. The algorithm relies on BDD-based functional

decomposition to identify the internal states and construct the transitions between

states according to the identified state information. Some minor modifications to

the TFF algorithm are needed as we discuss below. In Chapter 3, the iterative

circuit being folded or transformed is fully-specified, that is, there are no null output

functions. Because null functions do not provide any additional information for

state partitioning, they can simply be discarded from Y t+1, . . . , Y T or be treated as

constant functions during the encoding stage of state identification. Similarly, when

determining the output response of a state at time-frame t, if there is a null output

scheduled at that time-frame, then its corresponding slot should remain unspecified.

Following the notation of Chapter 3, Qt = {qt1, . . . , qtk} is used to denote the set of

32

doi:10.6342/NTU202001058

4.3. Functional Circuit Folding

states identified at time-frame t.

4.3.3 FSM Minimization

In the derived FSM, there is a unique initial state s01 and a don’t-care destination

state sT∗ inserted by the TFF algorithm, along with some null (dummy) outputs at

several states. As the FSM is incompletely specified, the flexibility leaves room for

state minimization. Again, we adopt the SAT-based exact minimization algorithm

MeMin [1] for FSM simplification as in Chapter 3.

Example 4.3 The state diagram in Figure 4.4a, where the mark “>" indicates

the initial state, is obtained by folding the 3-adder circuit by 3 time-frames with

the functional circuit folding algorithm. It can be further minimized to that in

Figure 4.4b. The number of states reduces from 6 (including the don’t-care state

s3∗) to 2. In Figure 4.4b, each state is annotated with its compatible states in

Figure 4.4a. We can observe that the minimized FSM is essentially a carry-save

adder, where s′0 and s′1 corresponds to the state with carry-bit of value 0 and 1,

respectively.

4.3.4 FSM Encoding

The step is identical to that described in Subsection 3.2.4. Two encoding methods:

1) natural binary encoding and 2) one-hot encoding are applied to convert the FSM

into a sequential circuit.

33

doi:10.6342/NTU202001058

4.3. Functional Circuit Folding

(a) FSM before state minimization.

(b) FSM after state minimization.

Figure 4.4: FSM by functional circuit folding of 3-adder.

34

doi:10.6342/NTU202001058

Chapter 5

Experiments

In this chapter, we evaluated our proposed methods on circuits selected or con-

verted from several sets of benchmarks, including ISCAS, ITC, MCNC(LGSynth),

LEKO/LEKU, Adder, and EPFL benchmarks. The proposed algorithmic meth-

ods were implemented in C++ language within the ABC system [7], which utilized

CUDD [31] as the underlying BDD package. Moreover, an open source package

MeMin [1] was used for state minimization. All the experiments were conducted

on a Linux server with Intel(R) Core(TM) i7-8700 3.20GHz CPU and 32GB RAM.

5.1 Time-frame Folding

TFF algorithm was evaluated with respect to three sets of benchmark circuits. Two

were obtained from unfolded and simplified ISCAS and ITC circuits, and one was

obtained from QBF solving of adaptive homing sequences [35]. A timeout limit of

35

doi:10.6342/NTU202001058

5.1. Time-frame Folding

300 seconds is imposed on timefold (steps 1 and 2 in Figure 3.1), and the same

limit is imposed on MeMin for state minimization (step 3 in Figure 3.1). Also, an

expansion limit of 5000 time-frames was imposed.

The results on ISCAS and ITC benchmarks are shown in Table 5.1, where

Columns 2-5 list the numbers of primary inputs, primary outputs, latches, and

AIG nodes, respectively, after optimization of the original sequential circuits, Col-

umn 6 lists the maximum time-frames that can be expanded and folded back within

the timeout limit, Columns 7 and 8 list the numbers of states of the folded circuit

before and after state minimization, respectively. For an entry in the table contain-

ing two values separated by “/”, it indicates that MeMin reached its timeout limit

before timefold reached its maximum number of time-frames. The value on the

left of “/” shows the data that both timefold and MeMin are executed successfully,

while the value on the right shows the data that only timefold can be done within

the timeout limit. Circuits b01 and b02 reached the 5000 time-frame limit and are

marked with the “*” sign.

From the table, the numbers of foldable time-frames within 300 seconds vary to

some extent, roughly proportional to the growth rate of the number of states. On

the other hand, the performance of MeMin exhibited somewhat non-robustness. For

example, for s382 expanded with 51 time-frames, the 11983 states can be successfully

minized to 1367 states within 300 seconds; in contrast, for s713 expanded with

4 time-frames, the 75 states cannot be minimized within 300 seconds. For the

homing sequence benchmarks, the results are shown in Table 5.2. As the depths of

the adaptive homing strategies are not large, our method successfully generates all

36

doi:10.6342/NTU202001058

5.1. Time-frame Folding

sequential circuits.

Table 5.1: Results of TFF on ISCAS and ITC benchmarks.

circuit #PI #PO #FF #gate #frm #state #m-state
b01 2 2 5 38 5000* 22493 18
b02 1 1 4 16 5000* 9997 8
b03 4 4 21 55 88 24968 631
b04 11 8 66 333 4/5 132/77195 130/-
b05 1 36 34 405 621 37804 69
b06 2 6 8 26 367 4367 13
b07 1 8 39 320 520 37599 83
b08 9 4 21 122 72 29003 798
b09 1 1 28 120 24/32 10241/96299 3795/-
b10 11 6 16 151 16/24 3248/10746 602/-
b11 7 6 30 469 15/21 2542/29458 676/-
b12 5 6 119 910 107 10317 1104
b13 10 10 45 168 117/158 10276/211252 139/-
b14 32 54 215 3689 2 3 2
b15 36 70 415 6587 6 11 8
b17 37 97 573 7648 7/11 103/13826 93/-
b18 36 23 3320 0 92 17444 382
b20 32 22 429 7956 2 3 1
b21 32 22 429 8067 2 3 1
b22 32 22 611 12339 2 3 1
s27 4 1 3 8 189 940 5

s208.1 10 1 8 48 183 12685 129
s298 3 6 14 70 55 5841 135
s344 9 11 15 91 5/43 1262/39618 863/-
s349 9 11 15 91 5/44 1262/40634 863/-
s382 3 6 21 92 51 11983 1367
s386 7 7 6 81 115 1458 13
s400 3 6 21 92 51 11983 1367
s420.1 18 1 16 101 187 13201 129
s444 3 6 21 95 51 11983 1367
s499 1 22 22 118 416 8922 22
s510 19 7 6 204 45/88 967/2984 44/-
s526 3 6 21 88 51 12021 1370
s641 35 24 14 100 2/4 3/75 2/-
s713 35 23 14 100 2/4 3/75 2/-
s820 18 19 5 200 62 1336 24
s832 18 19 5 215 67 1456 24
s838.1 34 1 32 214 189 13459 129
s938 34 1 32 214 188 13330 129
s953 16 23 29 282 9/21 270/6146 111/-
s967 16 23 29 285 9/20 270/6096 111/-
s991 65 17 19 331 1/2 2/6 1/-
s1196 14 14 18 367 1/3 2/1934 1/-
s1238 14 14 18 394 1/3 2/1934 1/-
s1269 18 10 37 413 1/2 2/4340 1/-
s1423 17 5 73 435 6/8 498/15698 396/-
s1488 8 19 6 472 77 3150 48
s1494 8 19 6 484 82 3390 48
s1512 29 21 57 342 5/9 32/2019 24/-
s3271 26 14 115 836 11 185 154
s3330 40 73 65 557 1 2 1
s3384 43 26 183 1006 5 13 12
s4863 49 16 81 789 1/2 2/1542 1/-
s5378 35 49 127 736 1 2 1
s6669 83 55 231 2226 0 - -
s9234.1 36 39 129 759 0/2 -/10 -/-
s13207 31 121 193 547 11/13 8034/27394 8033/-
s15850 14 87 128 375 769/770 776/777 11/-
s35932 35 320 1472 7345 5 90 53
s38417 28 106 1345 7179 2/3 6/114 5/-
s38584 12 278 784 4456 5/6 162/754 141/-

37

doi:10.6342/NTU202001058

5.1. Time-frame Folding

Table 5.2: Results of time-frame folding on homing sequence benchmarks.

circuit #PI #PO #gate #frm #state #m-state
5s2i0_c 3 3 1 3 6 4
5s2i0_r 3 3 0 3 4 1
5s2i2_c 4 4 1 4 9 4
5s2i2_r 4 4 2 4 8 5
10s5i1_c 12 12 175 4 35 29
10s5i4_c 12 12 105 4 30 24

To better understand the relation among the number of states, the number of

time-frames, and the runtime, circuits b07, b18, s499, s386, s1494, and s15850

were selected for study. Figure 5.1 shows the relation between the number of states

and the number of expanded time-frames. It can be observed that the number

of states before minimization (solid lines) constantly increased with the number of

time-frames, whereas the number of states after minimization (dotted lines) tended

to saturate after a certain number of time-frames. This phenomenon is expectable

as all inequivalent states should be distinguished eventually. On the other hand,

Figure 5.2 shows the relation between the total runtime (in gray) of timefold and

MeMin combined and the number of time-frames. The runtimes of timefold and

MeMin are plotted as bar charts every 5 time-frames in blue and green, respectively.

The positive correlation between the runtime and the number of expanded time-

frame is expected.

5.1.1 Fixed Point after TFF

We verified the consistency between the constructed sequential circuits and their

corresponding expanded iterative combinational circuits. In the cases of our ex-

periments, we observed that the constructed sequential circuit tends to become se-

quentially equivalent to its original sequential circuit when the number of expanded

38

doi:10.6342/NTU202001058

5.1. Time-frame Folding

Figure 5.1: #state vs. #time-frame.

time-frames is sufficiently large. We call this phenomenon as a fixed point. However,

the sequential equivalence may not happen immediately at the time-frame when the

number of states starts to saturate. Let q1 be the initial state of the state transition

graph, mi,j be the length of the shortest path from state qi to state qj, and ni,j be

the length of the shortest sequence distinguishing states qi and qj. Also let m be

the maximum length among the shortest paths from the initial state to any other

states, i.e., m = max{m1,j}, for any qj ∈ Q, j 6= 1; let n be the maximum length

among the shortest sequences distinguishing any state pairs, i.e., n = max{ni,j}, for

any qi, qj ∈ Q, i 6= j. In fact, if the reachable state sets grow monotonically during

time-frame expansion, then the fixed point is guaranteed by expanding the circuit

no greater than m + n time-frames.

Table 5.3 shows the time-frame numbers in columns 2-3 when the number of

states starts to saturate and when the obtained circuit starts to become sequen-

39

doi:10.6342/NTU202001058

5.1. Time-frame Folding

(a) b07 (b) b18

(c) s499 (d) s832

(e) s1494 (f) s15850.

Figure 5.2: Total runtime vs. #time-frame.

40

doi:10.6342/NTU202001058

5.1. Time-frame Folding

tially equivalent to the original circuit. Note that not every considered circuit is

listed in Table 5.3, because some of them are not able to reach these two conditions

within their maximally expanded time frames. The table lists in columns 4-6 the

information of the original sequential circuits and the expanded combinational cir-

cuits, which are expanded respectively by the number of time-frames that reaches

fixed point. Also, columns 7-12 shows the numbers of flip-flops and gates of the

folded sequential circuit under two different encoding schemes, and the correspond-

ing reduction ratio on the numbers of gates compared to those of its corresponding

time-frame expanded circuit. As generally observed, natural encoding can result in

fewer flip-flops, but require more gates, while one-hot encoding can achieve better

gate count reduction, but require more flip-flops.

Table 5.3: Results on folding with fixed point.

circuit #frame original expn. natural encoding one-hot encoding
sat. fp. #FF #gate #gate #FF #gate redu. #FF #gate redu.

b01 9 9 5 38 52 5 104 -100.00% 18 52 0.00%
b02 6 10 4 16 4 3 16 -300.00% 8 16 -300.00%
b03 14 14 21 55 189 10 8947 -4633.86% 631 1848 -877.78%
b05 69 133 34 405 35173 7 52 99.85% 69 11 99.97%
b06 6 7 8 26 52 4 82 -57.69% 13 45 13.46%
b07 85 85 39 320 13822 7 75 99.46% 83 54 99.61%
b08 55 55 21 122 5538 10 3395 38.70% 798 1083 80.44%
b18 50 50 129 2178 33139 9 2516 92.41% 382 1068 96.78%
s27 3 5 3 8 29 3 23 20.69% 5 42 -44.83%
s298 20 23 14 70 838 8 1489 -77.68% 135 767 8.47%
s386 8 9 6 81 297 4 117 60.61 13 74 75.08
s499 22 23 22 118 1333 5 71 94.67% 22 86 93.55%
s820 12 13 5 200 1484 5 276 81.40% 24 1360 8.36%
s832 12 13 5 215 1390 5 248 82.16% 24 1245 10.43%
s1488 23 23 6 472 7422 6 492 93.37% 48 341 95.41%
s1494 23 23 6 484 7693 6 523 93.20% 48 334 95.66%
s15850 5 5 128 375 24 4 29 -20.83% 11 24 0.00%

5.1.2 Circuit Size Compaction

To verify that our proposed method indeed has the ability in circuit size compaction,

we compared the sizes of the expanded combinational circuits to their folded sequen-

tial circuits in terms of AIG nodes. The ISCAS and ITC benchmark circuits selected

41

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

for comparison are the ones that have reached the number of time-frames to observe

sequential equivalence, and are expanded by that number of time-frames. Note that

for time-frame folding, there is no need to expand more than that number of time-

frames, since the folded sequential circuit will remain the same, while the expanded

combinational circuit will continue to grow in size. Additionally, homing sequence

benchmarks are also included for comparison. The results are plotted in Figure 5.3,

where black data points correspond to ISCAS and ITC benchmark circuits, and the

blue ones correspond to homing sequence benchmarks. Both natural and one-hot

encoding schemes were applied, and the one resulted in a smaller circuit size was

taken for comparison. The data points on the right of the gray dotted line corre-

spond to the cases where the obtained sequential circuits are of size smaller than

their combinational counterparts. We observed that larger circuits tend to bene-

fit more from our method, as the combinational circuits with over 200 AIG nodes,

when folded into sequential circuits, are all reduced significantly in size. Note that

the upper-most (worst-case) point in Figure 5.3 is the circuit b03 expanded with

14 time-frames. Although time-frame folding does not achieve compaction in this

case, it is expected that, when more time-frames are to be expanded, the iterative

combinational circuit size will keep growing while the folded sequential circuit size

will remain the same.

5.2 Time Multiplexing via Circuit Folding

The proposed structural and functional methods were evaluated on 27 combinational

circuits shown in Table 5.4, where columns 2-5 list the numbers of primary inputs,

42

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

Figure 5.3: Circuit size after TFF.

primary outputs, AIG nodes, and 6-input LUTs, respectively, of the circuits after

optimization. The circuits marked with “*” are simplified from the original circuits

by extracting some primary outputs and keeping only the structural input support

of those outputs.

Table 5.4: Benchmark statistics.

circuit #PI #PO #gate #LUT
64-adder 128 65 507 96
128-adder 256 129 844 244
128-parity 128 1 381 33
apex2 38 3 1448 581
arbiter* 256 1 361 102
b14_C 276 299 3890 1152
b15_C 484 519 6801 1966
b17_C* 380 3 1634 381
b20_C 521 512 8173 2221
b21_C 521 512 8250 2311
b22_C 766 757 12355 3375
bcb 26 39 1554 530

C7552 207 108 1485 340
des 256 245 3087 717
e64 65 65 244 114
g216 216 216 3982 648
g625 625 625 10625 2498
g1296 1296 1296 31447 5184
hyp 256 128 213158 45142
i2 201 1 208 63
i3 132 6 126 38
i4 192 6 186 42
i10 257 224 1586 507
max 512 130 2776 812

mem_ctrl 1204 1231 15908 5207
too_large 38 3 2642 1111

voter 1001 1 12400 1667

43

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

5.2.1 Structural Folding on Large Circuits

We first evaluate the effectiveness of the structural method for time multiplexing by

imposing the I/O pin count limitation to 200, according to some commercial FPGA

specifications. In addition, a simple alternative to fold a circuit by T time-frames

can be done by temporarily storing inputs of the first T−1 time-frames into flip-flops

and defer computing all outputs at the last time-frame. Table 5.5 shows the results

on folding 17 benchmark circuits with more than 200 pins under 5 different settings.

Due to the space limitation, the table is split into 2 subtables. Columns 2-3 of each

subtable list the number of time-frames each circuit should be folded and the number

of inputs after folding, and the rest of the columns list the information of the folded

circuit under different settings. The “simple” setting corresponds to the method by

temporarily storing inputs described earlier, and the “structural” setting corresponds

to the structural method presented in Section 4.2. In the settings annotated with

“s”, we applied pin scheduling procedure outlined in Subsection 4.3.1. In the settings

annotated with “f”, flip-flops were reused during folding to lower the flip-flop usage,

under the condition that the value held by a flip-flop at current iteration is no

longer needed in the computation of the following iterations. Under each setting,

the 5 columns list the information of folded sequential circuit, including the number

of outputs, flip-flops, AIG nodes, 6-input LUTs, and the LUT overhead incurred

comparing to the original combinational circuit, respectively. The average LUT

overhead is listed in the last row of Table 5.5. The experimental results indicate

the ability of the structural method on meeting the I/O pin constraint3. The circuit

3Note that the number of output pins can be larger than 200. In that case, multiple clock cycles
can be taken to produce the outputs.

44

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

size in terms of LUT usage before and after folding is plotted in Figure 5.4. The

data points on the left of the gray dotted line correspond to the cases where the

folded circuits are of size larger than the original combinational circuits. It can be

observed that circuit folding would incur some LUT overhead in most cases.

The best overall results of structural folding were obtained by applying both the

pin scheduling and flip-flop reuse procedures, and incurred an average of 20.07%

LUT overhead, despite the fact that there are cases, 128-adder, hyp, i2, with

LUT savings. Notice that the LUT increase could not be a serious problem as

the LUT resources are not as critical as the I/O pin bottleneck in FPGAs. The

experiments show that the pin scheduling procedure can reduce the number of output

pins of the folded circuit, and that flip-flop reuse procedure can lower the flip-flop

usage. Therefore, the 2 methods combined can result in a folded circuit with lower

complexity (less LUT usage). As all the experiments were done in less than a second,

the results demonstrate the scalability of the structural method.

When applied to the 17 benchmark circuits in Table 5.5, the additional control

circuitry to store the input signals of the simple method incurred an average 46.59%

LUT overhead, which is 26.52% higher than the proposed structural-sf method.

The number of flip-flops required for the simple method is larger or equal to the

structural-sf method in all cases. The number of output pins after this simple folding

remains the same as the number of primary outputs of the original combinational

circuit, since all the outputs are scheduled to be computed at the last time-frame.

In contrast, the structural method can achieve output pin reduction on 11 out of the

17 cases. In comparison, the structural-sf method is better than the simple method

45

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

when taking the number of LUTs, flip-flops and output pins into consideration.

To study the potential of latency reduction by circuit folding, we perform case

analysis on circuit i10, with 257 PIs and 224 POs. The analysis is based on the

following assumptions: 1) Assume the maximum I/O transmission rate is 200 bits

per I/O clock cycle. 2) Assume TDM ratio r = 1, i.e., the system clock cycle equals

the I/O clock cycle, for the circuit without folding and the circuit with folding. 3)

Assume the combinational logic of both circuits without and with folding can be

computed in one I/O clock cycle. With structural circuit folding, i10 would be

folded by two time-frames into a sequential circuit with 129 inputs and 180 outputs

as shown in Table 5.5, with 44 outputs scheduled in the first time-frame and 180

scheduled at the second time-frame. The overall execution requires three system

(also I/O) clock cycles: the first cycle transmits 129 inputs, second cycle 129 inputs

and 44 outputs, and third cycle 180 outputs. In contrast, without circuit folding, the

execution of i10 requires a total of four I/O clock cycles: the first cycle transmits

200 inputs, second cycle 57 inputs, third cycle 200 outputs, and fourth cycle 24

outputs. Effectively, circuit folding may achieve 25% I/O clock cycle reduction. In

fact, TDM aims at increasing the effective I/O pins of FPGA by slowing down the

system clock to increase I/O transmissions during a system clock period, while our

circuit folding can directly decrease the required number of pins of a logic circuit.

The TDM and circuit folding methods are orthogonal, and can be combined to

alleviate the FPGA I/O bottleneck issue.

46

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

Ta
bl
e
5.
5:

R
es
ul
ts

of
st
ru
ct
ur
al

ci
rc
ui
t
fo
ld
in
g.

ci
rc
ui
t

#
fr
m

#
in

si
m
pl
e

st
ru
ct
ur
al

st
ru
ct
ur
al
-s

#
ou

t
#
F
F

#
ga
te

#
L
U
T

ov
er
he
ad

#
ou

t
#
F
F

#
ga
te

#
L
U
T

ov
er
he
ad

#
ou

t
#
F
F

#
ga
te

#
L
U
T

ov
er
he
ad

12
8-
ad

de
r

2
12
8

12
9

12
9

14
25

41
0

68
.0
3%

65
2

64
1

19
5

-2
0.
08
%

65
2

64
1

19
5

-2
0.
08
%

b1
4_

C
2

13
8

29
9

13
9

44
51

13
13

13
.9
8%

26
2

45
3

52
13

15
40

33
.6
8%

18
9

34
7

49
73

14
27

23
.8
7%

b1
5_

C
3

16
2

51
9

32
7

82
11

23
67

20
.4
0%

27
4

56
1

89
28

24
73

25
.7
9%

34
3

83
8

92
76

26
55

35
.0
5%

b2
0_

C
3

17
4

51
2

35
1

96
17

26
63

19
.9
0%

42
4

73
4

10
65
4

29
64

33
.4
5%

24
8

53
6

10
00
0

26
19

17
.9
2%

b2
1_

C
3

17
4

51
2

35
1

96
61

27
39

18
.5
2%

42
4

72
6

10
49
7

29
52

27
.7
4%

24
8

54
8

10
01
9

27
03

16
.9
6%

b2
2_

C
4

19
2

75
7

58
0

14
65
6

41
18

22
.0
1%

66
1

12
66

16
53
6

45
87

35
.9
1%

29
2

97
6

15
88
2

41
39

22
.6
4%

C
75
52

2
10
4

10
8

10
5

19
10

46
7

37
.3
5%

96
11
7

18
28

44
7

31
.4
7%

78
11
1

18
85

45
8

34
.7
1%

de
s

2
12
8

24
5

12
9

34
65

74
1

3.
35
%

24
5

18
5

36
17

86
8

21
.0
6%

13
1

14
6

36
52

75
6

5.
44
%

g1
29
6

7
18
6

12
96

11
23

35
62
7

79
99

54
.3
0%

12
96

42
89

36
87
3

96
88

86
.8
8%

12
96

42
89

37
00
5

96
76

86
.6
5%

g2
16

2
10
8

21
6

10
9

46
06

10
17

56
.9
4%

21
6

16
7

34
83

82
0

26
.5
4%

21
6

16
7

34
87

82
0

26
.5
4%

g6
25

4
15
7

62
5

47
5

12
39
7

29
75

19
.1
0%

62
5

16
07

15
04
3

43
30

73
.3
4%

62
5

16
07

14
98
6

43
16

72
.7
8%

hy
p

2
12
8

12
8

12
9

21
37
48

45
43
5

0.
65
%

12
8

25
6

14
56
28

29
80
5

-3
3.
98
%

12
8

25
6

14
56
28

29
80
5

-3
3.
98
%

i2
2

10
1

1
10
2

51
4

16
5

17
0.
49
%

1
10

16
1

47
-2
2.
95
%

1
10

15
9

47
-2
2.
95
%

i1
0

2
12
9

22
4

13
0

21
33

69
2

36
.4
9%

18
0

22
4

23
65

74
0

45
.9
6%

12
8

15
8

21
95

66
2

30
.5
7%

m
ax

3
17
1

13
0

34
5

39
32

11
41

40
.5
2%

13
0

39
5

39
12

10
03

23
.5
2%

12
9

39
0

38
94

99
3

22
.2
9%

m
em

_
ct
rl

7
17
2

12
31

10
39

19
98
2

63
72

22
.3
7%

77
2

32
94

27
46
5

83
17

59
.7
3%

38
8

22
06

25
15
0

75
00

44
.0
4%

vo
te
r

6
16
7

1
84
1

14
77
2

25
11

50
.6
3%

1
16
6

11
44
6

19
21

15
.2
4%

1
16
6

11
38
9

18
99

13
.9
2%

av
g.

46
.5

9%
34

.8
4%

25
.0

8%

ci
rc
ui
t

#
fr
m

#
in

st
ru
ct
ur
al
-f

st
ru
ct
ur
al
-s
f

#
ou

t
#
F
F

#
ga
te

#
L
U
T

ov
er
he
ad

#
ou

tp
ut

#
F
F

#
ga
te

#
L
U
T

ov
er
he
ad

12
8-
ad

de
r

2
12
8

65
2

62
4

21
0

-1
3.
93
%

65
2

62
4

21
0

-1
3.
93
%

b1
4_

C
2

13
8

26
2

45
0

42
99

14
83

28
.7
3%

18
9

34
7

43
03

13
91

20
.7
5%

b1
5_

C
3

16
2

27
4

43
2

79
57

23
15

17
.7
5%

34
3

70
7

79
27

24
94

26
.8
6%

b2
0_

C
3

17
4

42
4

60
6

97
23

27
74

24
.9
0%

24
8

36
4

94
15

24
91

12
.1
6%

b2
1_

C
3

17
4

42
4

59
8

95
90

28
13

21
.7
2%

24
8

38
6

94
97

25
70

11
.2
1%

b2
2_

C
4

19
2

66
1

11
00

15
67
2

44
25

31
.1
1%

29
2

58
3

15
07
8

39
33

16
.5
3%

C
75
52

2
10
4

96
11
7

16
10

43
7

28
.5
3%

78
11
1

16
72

43
4

27
.6
5%

de
s

2
12
8

24
5

18
5

32
22

86
9

21
.2
0%

13
1

14
6

33
95

75
1

4.
74
%

g1
29
6

7
18
6

12
96

24
20

35
01
9

91
30

76
.1
2%

12
96

24
20

34
93
6

91
08

75
.6
9%

g2
16

2
10
8

21
6

16
7

31
80

80
8

24
.6
9%

21
6

16
7

31
55

79
4

22
.5
3%

g6
25

4
15
7

62
5

11
54

13
03
3

39
94

59
.8
9%

62
5

11
54

13
04
5

40
13

60
.6
5%

hy
p

2
12
8

12
8

25
6

14
63
48

30
32
8

-3
2.
82
%

12
8

25
6

14
63
48

30
32
8

-3
2.
82
%

i2
2

10
1

1
10

14
4

45
-2
6.
23
%

1
10

14
4

49
-1
9.
67
%

i1
0

2
12
9

18
0

22
4

19
07

68
2

34
.5
2%

12
8

15
8

18
99

63
7

25
.6
4%

m
ax

3
17
1

13
0

21
8

33
01

85
3

5.
05
%

12
9

21
9

32
95

82
4

1.
48
%

m
em

_
ct
rl

7
17
2

77
2

20
40

26
28
7

79
09

51
.8
9%

38
8

14
29

23
88
1

71
59

37
.4
9%

vo
te
r

6
16
7

1
71

11
19
9

18
93

13
.5
6%

1
71

11
26
5

18
80

12
.7
8%

av
g.

29
.1

4%
20

.0
7%

47

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

Figure 5.4: Circuit size after structural folding.

5.2.2 Comparing Structural and Functional Folding

To compare the performance of the structural and functional methods, we conducted

experiments on 11 benchmarks, each being folded by 4, 8 and 16 time-frames. A

timeout limit of 300 seconds was imposed on pin scheduling and FSM construction

combined (steps 1 and 2 in Figure 4.3), and the same limit was imposed on MeMin

for state minimization (step 3 in Figure 4.3). Table 5.6 shows the 33 results, where

columns 2-4 list the folding number and the numbers of input/outputs of the folded

sequential circuits, respectively, and columns 5-15 list the folded circuit information

of the two methods, including the number of outputs, AIG nodes, LUTs, and flip-

flops. The results of the functional method are annotated in column 14 with the

applied configurations: whether to enable input reordering (r/nr), whether to mini-

48

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

mize FSM states (m/nm), and the two encoding options (nat/1hot). Column 8 lists

the numbers of states before and after minimization (separated by “/”), columns 12-

13 list the reduction on the numbers of LUTs and flip-flops, respectively, of the

functional method over the structural method, and column 15 lists the CPU time

in seconds of the functional method on each benchmark. An entry “-” in the table

indicates that the value cannot be obtained within the timeout limit. The structural

method took less than a second for all the experiments, while the functional method

generated results for 29 of the 33 instances within the timeout limit. On the other

hand, the functional method achieved an average of 40.40% and 33.74% reductions

on LUT and flip-flop usage, respectively, over the structural method in the 29 cases.

In addition, we compared the sizes of the original combinational circuits to their

folded sequential circuits under the two methods in terms of the number of LUTs.

The results are plotted in Figure 5.5, where the triangular and circular points cor-

respond to the results of the structural and functional methods, respectively, and

the blue, green, and orange points correspond to results folded by 16, 8 and 4 time-

frames, respectively. The data points to the right of the gray dotted line are the

cases where the folded circuits are smaller than their combinational counterparts.

It is interesting to note that 20 of the 29 results obtained by the functional method

achieved circuit size reduction, while 26 of the 33 results from the structural method

incurred LUT overhead. The overhead of the structural method is understandable

because circuit folding introduces additional control logic and flip-flop boundaries

to the original circuit that restricts combinational synthesis.

From the experimental results in Table 5.6, we notice that the functional method

49

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

Ta
bl
e
5.
6:

C
om

pa
ri
so
n
be

tw
ee
n
st
ru
ct
ur
al

an
d
fu
nc
ti
on

al
m
et
ho

ds
.

ci
rc
ui
t

#
fr
m

#
in

#
ou

t
st
ru
ct
ur
al
-s
f

fu
nc
ti
on

al
#
ga
te

#
L
U
T

#
F
F

#
st
at
e

#
ga
te

#
L
U
T

#
F
F

#
L
U
T

re
du

.
#
F
F
re
du

.
co
nfi

g
ru
nt
i m

e

64
-a
dd

er
16

8
5

56
29

17
32
/2

32
7

1
75
.8
6%

94
.1
2%

nr
/m

/n
at

0.
28

8
16

9
98

35
9

16
/-

15
0

40
4

-1
4.
29
%

55
.5
6%

nr
/n

m
/n

at
9.
29

4
32

17
20
5

82
5

-
-

-
-

-
-

-
>
30
0

12
8-
pa

ri
ty

16
8

1
41

23
17

32
/2

24
3

1
86
.9
6%

94
.1
2%

r/
m
/n

at
0.
16

8
16

1
60

15
9

16
/-

74
9

4
40
.0
0%

55
.5
6%

r/
nm

/n
at

5.
80

4
32

1
10
4

15
5

-
-

-
-

-
-

-
>
30
0

ap
ex
2

16
3

1
24
09

83
6

33
8

47
4/
-

17
64

73
4

47
4

12
.2
0%

-4
0.
24
%

r/
nm

/1
ho

t
0.
38

8
5

2
21
35

73
6

24
0

32
7/
-

17
67

69
6

32
7

5.
43
%

-3
6.
25
%

r/
nm

/1
ho

t
0.
13

4
10

3
17
03

69
6

23
6

12
7/
-

11
77

44
4

12
7

36
.2
1%

46
.1
9%

r/
nm

/1
ho

t
0.
12

ar
bi
te
r*

16
16

1
87
7

27
4

14
4

47
/4

53
12

2
95
.6
2%

98
.6
1%

r/
m
/n

at
0.
57

8
32

1
83
6

24
4

13
6

23
/4

10
4

25
2

89
.7
5%

98
.5
3%

r/
m
/n

at
0.
53

4
64

1
80
0

23
2

13
2

11
/4

16
5

47
2

79
.7
4%

98
.4
8%

r/
m
/n

at
0.
51

b1
7_

C
*

16
24

1
22
63

63
6

14
2

23
3/
-

11
49

47
2

23
2

25
.7
9%

-6
3.
38
%

r/
nm

/1
ho

t
42
.8
9

8
48

1
20
29

56
6

13
4

86
/-

74
6

27
9

86
50
.7
1%

35
.8
2%

r/
nm

/1
ho

t
85
.9
8

4
95

1
16
51

46
5

11
4

-
-

-
-

-
-

-
>
30
0

bc
b

16
2

5
25
73

85
2

37
9

53
3/
-

14
60

84
8

53
3

0.
47
%

-4
0.
63
%

nr
/n

m
/1
ho

t
0.
06

8
4

8
20
14

75
0

32
4

27
3/
22
7

10
86

50
9

27
3

32
.1
3%

15
.7
4%

nr
/n

m
/1
ho

t
0.
05

4
7

20
19
38

76
0

36
7

14
1/
99

94
0

37
5

14
1

50
.6
6%

61
.5
8%

nr
/n

m
/1
ho

t
0.
08

e6
4

16
5

5
38
9

14
2

37
29
/1
4

74
17

4
88
.0
3%

89
.1
9%

r/
m
/n

at
0.
12

8
9

9
34
9

12
2

28
16
/9

10
8

26
4

78
.6
9%

85
.7
1%

r/
nm

/n
at

0.
08

4
17

17
29
4

11
5

22
8/
-

16
2

52
3

54
.7
8%

86
.3
6%

r/
nm

/n
at

4.
68

i2
16

13
1

40
9

13
2

43
54
/-

20
7

87
6

34
.0
9%

86
.0
5%

r/
nm

/n
at

0.
25

8
26

1
32
9

96
31

25
/-

15
2

61
25

36
.4
6%

19
.3
5%

r/
nm

/1
ho

t
0.
18

4
51

1
24
5

73
23

14
/-

13
0

48
14

34
.2
5%

39
.1
3%

r/
nm

/1
ho

t
0.
22

i3
16

9
1

17
1

68
24

40
/-

14
5

62
35

8.
82
%

-4
5.
83
%

r/
nm

/1
ho

t
0.
09

8
17

1
11
6

43
16

22
/-

10
3

41
20

4.
65
%

-2
5.
00
%

r/
nm

/1
ho

t
0.
12

4
33

2
10
6

36
11

10
/-

89
32

9
11
.1
1%

18
.1
8%

r/
nm

/1
ho

t
29
.0
5

i4
16

12
1

43
9

13
2

39
83
/-

45
8

18
4

82
-3
9.
39
%

-1
10
.2
6%

r/
nm

/1
ho

t
3.
85

8
24

1
33
8

94
27

38
/-

29
5

12
4

37
-3
1.
91
%

-3
7.
04
%

r/
nm

/1
ho

t
5.
48

4
48

2
23
3

60
15

-
-

-
-

-
-

-
>
30
0

to
o_

la
rg
e

16
3

1
43
31

14
75

61
5

30
5/
-

10
57

47
0

30
5

68
.1
4%

50
.4
1%

r/
nm

/1
ho

t
0.
14

8
5

2
39
75

13
87

54
1

18
7/
-

80
5

33
1

18
7

76
.1
4%

65
.4
3%

r/
nm

/1
ho

t
0.
11

4
10

3
32
45

12
84

53
7

92
/-

67
3

25
0

92
80
.5
3%

82
.8
7%

r/
nm

/1
ho

t
0.
11

av
g.

40
.4

0%
33

.7
4%

50

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

Figure 5.5: Circuit size comparison between structural and functional folding.

performs especially well on certain types of circuits with intrinsic iterative structures,

such as 64-adder and 128-parity. Since the original TFF algorithm is designed for

iterative circuits, the phenomenon is conceivable. We further conducted experiments

on adders and majority voters. For an n-bit adder with 2n primary inputs and n+1

primary outputs, it is folded by n time-frames, resulting in a sequential circuit with

2 input pins and 2 output pins. Similarly, for an n-bit majority voter with n primary

inputs and 1 primary output, it is folded by n time-frames, resulting in a sequential

circuit with 1 input pin and 1 output pin. The results of folding adders and voters

are shown in Table 5.7 and Table 5.8. Columns 2-3 of the 2 tables list the size infor-

mation of the original combinational circuit, column 4 lists the folding number, and

columns 5-15 list the folded circuit information of the two methods, including the

number of AIG nodes, LUTs, and flip-flops. Column 8 lists the numbers of states

before and after minimization (separated by “/”), and columns 12-13 list the reduc-

51

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

tion on the numbers of LUTs and flip-flops, respectively, of the functional method

over the structural method Finally, columns 14-15 list the CPU time in seconds of

the FSM construction step and the FSM minimization step during functional folding

on each benchmark, respectively. The FSMs obtained by folding adders with the

functional method all reduced to the FSM of the 1-bit carry-save adder shown in

Figure 4.4b. Therefore, the circuit size remains the same after functional folding.

The results demonstrate the circuit size compaction ability of the functional method,

as the numbers of LUTs of functionally folded circuits are significantly smaller than

those of structurally folded circuits and original combinational circuits. However,

the results also signify the limitation of the functional method in computation time.

The FSM of the 256-adder could not be constructed within 10 hours, since this step

relies on BDD-based operations, which could be time-consuming for larger circuits.

On the other, while the FSM construction could be done pretty fast for the voters,

the FSM minimization of 23-voter and 25-voter took over 5 hours to compute,

as MeMin struggled to find a minimum-state FSM. Despite the 2 computational bot-

tlenecks in the FSM construction and minimization steps, the functional method

can usually obtain a more optimal folded circuit when compared to the structural

method in our experiments.

5.2.3 Case Study of Combining Structural and Functional

Folding

From the experimental results, the structural method demonstrates its effectiveness

and scalability in folding large circuits, while the functional method generates better

52

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

Figure 5.6: Hierarchical structure of C7552.

solutions with a higher computation cost. To show that the combination of the 2

methods can produce a more optimal result, we conducted a case study on circuit

C7552, which cannot be directly folded with functional method under runtime limit.

The high-level hierarchical structure of C7552 is shown in Figure 5.6, where each

module or subcircuit is represented by a rounded rectangle, and the bit-width of

each wire is annotated in gray on the edge of the connecting modules.

The design of each module was processed and synthesized into a combinational

circuit by Yosys [37], and then be folded by 2 time-frames with either the structural

or functional method. During the folding procedure, the input schedule of a module

is constrained by the output schedule of its fanin modules, that is, the input signal

of a module should be scheduled at a time-frame no earlier than the time-frame it is

produced as an output by other modules. After the 7 modules of C7552 are folded,

53

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

they are connected into an overall folded circuit. Table 5.9 shows the results of fold-

ing each module and the statistics of the combined folded circuit. Columns 2-6 list

the information of the combinational circuit synthesized from each module, includ-

ing the number of primary inputs, primary outputs, AIG nodes and LUTs, along

with its functionality. Columns 7-13 list the information of the folded sequential

circuit, including the number of input pins, output pins, AIG nodes, LUTs, and the

LUT overhead incurred comparing to the original combinational circuit, with the

last column listing the corresponding folding method. The last row of Table 5.9 lists

the information of the C7552 circuit, when being structurally folded with the same

input/output schedule as the combined folded circuit. The results show that the

combination of the 2 folding methods can indeed generate a better folded circuit

when compared to the one folded only with the structural method, with 55.26% and

28.81% reduction in flip-flop and LUT usage, respectively. Therefore, by combing

the structural and functional methods, we can achieve higher scalability with an

improved optimality in the resulting folded circuits.

54

doi:10.6342/NTU202001058

5.2. Time Multiplexing via Circuit Folding

Ta
bl
e
5.
7:

R
es
ul
ts

of
fo
ld
in
g
ad

de
rs
.

ci
rc
ui
t

or
ig
in
al

#
fr
m

st
ru
ct
ur
al
-s
f

fu
nc
ti
on

al

#
ga
te

#
L
U
T

#
ga
te

#
L
U
T

#
F
F

#
st
at
e

#
ga
te

#
L
U
T

#
F
F

#
L
U
T

re
du

.
#
F
F

re
du

.
ru
nt
i m

e
F
SM

co
ns
tr
.

M
eM

in
8-
ad

de
r

56
14

8
20

12
9

16
/2

8
3

1
30
0.
00
%

80
0.
00
%

0.
02
4

0.
02
2

16
-a
dd

er
11
2

31
16

28
26

17
32
/2

8
3

1
76
6.
67
%

16
00
.0
0%

0.
03

0.
02
2

32
-a
dd

er
23
1

61
32

44
44

33
64
/2

8
3

1
13
66
.6
7%

32
00
.0
0%

0.
05
1

0.
02
2

64
-a
dd

er
50
7

96
64

80
84

65
12
8/
2

8
3

1
27
00
.0
0%

64
00
.0
0%

0.
11
2

0.
02
4

12
8-
ad

de
r

84
4

24
4

12
8

14
0

16
8

12
9

25
6/
2

8
3

1
55
00
.0
0%

12
80
0.
00
%

0.
28
9

0.
02
4

25
6-
ad

de
r

18
94

48
7

25
6

26
8

33
6

25
7

-
-

-
-

-
-

>
36
00
0

-
av

g.
21

26
.6

7%
49

60
.0

0%

Ta
bl
e
5.
8:

R
es
ul
ts

of
fo
ld
in
g
vo

te
rs
.

ci
rc
ui
t

or
ig
in
al

#
fr
m

st
ru
ct
ur
al
-s
f

fu
nc
ti
on

al

#
ga
te

#
L
U
T

#
ga
te

#
L
U
T

#
F
F

#
st
at
e

#
ga
te

#
L
U
T

#
F
F

#
L
U
T

re
du

.
#
F
F

re
du

.
ru
nt
im

e
F
SM

co
ns
tr
.

M
eM

in
15
-v
ot
er

10
2

14
15

25
5

83
32

79
/9

17
5

4
93
.9
8%

87
.5
0%

0.
03

0.
30

17
-v
ot
er

14
2

14
17

26
8

88
34

98
/1
0

15
5

4
94
.3
2%

88
.2
4%

0.
03

1.
51

19
-v
ot
er

17
5

22
19

32
9

10
2

38
11
9/
11

15
5

4
95
.1
0%

89
.4
7%

0.
03

63
.5
6

21
-v
ot
er

21
1

22
21

37
1

11
9

40
14
2/
12

14
5

4
95
.8
0%

90
.0
0%

0.
03

98
5.
64

23
-v
ot
er

19
9

22
23

42
0

12
9

42
16
7/
13

16
5

4
96
.1
2%

90
.4
8%

0.
03

21
52
6.
34

25
-v
ot
er

25
4

22
25

47
3

14
1

47
19
4/
14

15
5

4
96
.4
5%

91
.4
9%

0.
03

41
22
15
.8
3

av
g.

95
.2

9%
89

.5
3%

Ta
bl
e
5.
9:

R
es
ul
ts

of
fo
ld
in
g
C7

55
2
w
it
h
th
e
st
ru
ct
ur
al

an
d
fu
nc

ti
on

al
m
et
ho

ds
co
m
bi
ne
d.

ci
rc
ui
t

or
ig
in
al

fo
ld
ed

#
P
I

#
P
O

#
ga
te

#
L
U
T

de
sc
ri
pt
io
n

#
in

#
ou

t
#
F
F

#
ga
te

#
L
U
T

ov
er
he
ad

m
et
ho

d
M
0

20
7

21
7

33
0

21
7

bu
s
si
gn

al
co
nt
ro
lle

r
10
4

11
1

5
50
6

15
8

-2
7.
19
%

st
ru
ct
ur
al

M
1

69
35

29
8

78
34
-b
it
ad

de
r

35
18

2
12
8

33
-5
7.
69
%

fu
nc
ti
on

al
M
2

34
4

16
8

12
su
m

pa
ri
ty

ch
ec
ke
r

17
3

2
62

9
-2
5.
00
%

fu
nc
ti
on

al
M
3

69
2

14
4

40
34
-b
it
co
m
pa

ra
to
r

35
2

2
72

26
-3
5.
00
%

fu
nc
ti
on

al
M
4

42
1

19
5

15
sa
ni
ty

ch
ec
ke
r

21
1

3
87

13
-1
3.
33
%

fu
nc
ti
on

al
M
5

42
1

19
5

15
sa
ni
ty

ch
ec
ke
r

21
1

3
87

13
-1
3.
33
%

fu
nc
ti
on

al
M
6

42
1

19
5

15
sa
ni
ty

ch
ec
ke
r

21
1

3
92

14
-6
.6
7%

fu
nc
ti
on

al

C
75
52

20
7

10
8

14
85

34
0

ov
er
al
l
ci
rc
ui
t

10
4

64
17

94
6

25
7

-2
4.
41

co
m
bi
ne
d

10
4

64
38

16
58

36
1

6.
18

st
ru
ct
ur
al

55

doi:10.6342/NTU202001058

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the thesis, we have introduced circuit folding as a process of transforming a com-

binational circuit CC into a sequential circuit CS, which after time-frame expansion,

becomes functionally equivalent to CC . We have formulated the time-frame folding

problem, and provided a computational solution based on functional decomposition

for state identification and transition reconstruction. Our proposed algorithm guar-

antees the sequential circuit folded from an iterative combinational circuit is state

minimized. We have further extended the concept of folding for general combina-

tional circuits and formulated a circuit folding approach to time multiplexing on

FPGAs. The structural and functional methods, orthogonal to prior time multi-

plexing methods, have been proposed and implemented to show their potentials to

alleviate the I/O-pin bottleneck of FPGAs. Circuit folding can be applied to var-

56

doi:10.6342/NTU202001058

6.2. Future Work

ious tasks in logic synthesis. Experimental results demonstrated the benefit of the

time-frame folding method in circuit compaction from an iterative combinational

circuit to its sequential counterpart, which can be useful in testbench generation,

sequential synthesis of bounded strategies, and other applications. In addition, the

experiments on time multiplexing suggested the scalability of the structural method

and the optimization power of the functional method. From the case study of com-

bining the 2 folding methods, we saw the potential of the hybrid method that can

achieve both scalability and optimality.

6.2 Future Work

For future work, since the finite state machine (FSM) shares a lot of similarities with

the finite state automata (FSA), we would like to extend the time-frame folding al-

gorithm for applications in automata theory. Given a set of symbolic constraints

of bounded-length strings describing a regular language L, i.e. the characteristic

functions of the accepting (or rejecting) strings, the time-frame folding algorithm,

with slight modification, should be able to derive a symbolic finite automaton [34]

complying with the language L, with the transition condition (depicted in Subsec-

tion 3.2.2) serving as the predicate of the transition between 2 states. We would

like to investigate the applicability of the above-described method in the context of

finite automata learning, such as in [2,13], a finite (symbolic) automaton is learnt by

membership queries and conjectures from an oracle, or as in [10], a separating finite

automaton of 2 languages is learnt with a similar manner. On the other hand, we

would also like to apply some automata learning procedure, e.g. the L? algorithm [2],

57

doi:10.6342/NTU202001058

6.2. Future Work

to the problem of time-frame folding. The given k-iterative combinational circuit

would serve as the oracle or the teacher, from which an automaton could be learnt

correspondingly. We would then like to compare the performance and effectiveness

of such method with our proposed BDD-based algorithm.

For another future work, we would like to fully automate the hybrid folding

method of combining the structural and functional method for time multiplexing,

especially in the circuit partitioning stage. In the case study we conducted, we relied

on the given high-level hierarchical design and partitioned the circuit into smaller

modules manually. Therefore, it would be more desirable if the partitioning could

be done automatically from a flattened gate-level logic netlist. Moreover, we would

like to investigate other functional decomposition techniques to help mitigate the

high computational cost of BDD-based operations during time-frame and functional

circuit folding.

58

doi:10.6342/NTU202001058

Bibliography

[1] A. Abel and J. Reineke. MEMIN: SAT-based exact minimization of incom-

pletely specified Mealy machines. In Proceedings of International Conference

of Computer-Aided Design (ICCAD), pages 94–101, 2015.

[2] D. Angluin. Learning regular sets from queries and counterexamples. Informa-

tion and Computation, 75(2):87 – 106, 11 1987.

[3] R. Ashenhurst. The Decomposition of Switching Functions, volume 29, pages

74–116. Computation Lab, Harvard University, 1959.

[4] J. Babb, R. Tessier, and A. Agarwal. Virtual wires: Overcoming pin limitations

in FPGA-based logic emulators. In Proceedings of IEEE Workshop on FPGAs

for Custom Computing Machines, pages 142–151, 1993.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In Proceedings of International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), pages 193–207, 1999.

[6] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability.

IOS Press, 2009.

59

doi:10.6342/NTU202001058

Bibliography

[7] R. Brayton and A. Mishchenko. ABC: An Academic Industrial-Strength Ver-

ification Tool. In Proceedings of International Conference on Computer Aided

Verification (CAV), pages 24–40, 2010.

[8] S.-C. Chang, M. Marek-Sadowdka, and T. Hwang. Technology mapping for

TLU FPGAs based on decomposition of binary decision diagrams. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

15(10):1226–1236, 1996.

[9] S.-C. Chen, R. Sun, and Y.-W. Chang. Simultaneous partitioning and sig-

nals grouping for time-division multiplexing in 2.5D FPGA-based systems. In

Proceedings of International Conference on Computer-Aided Design (ICCAD),

2018.

[10] Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang. Learning

minimal separating DFA’s for compositional verification. In Proceedings of Tools

and Algorithms for the Construction and Analysis of Systems (TACAS), pages

31–45, 2009.

[11] P.-C. Chien and J.-H. Jiang. Time-frame folding: Back to the sequentiality. In

Proceedings of International Conference of Computer-Aided Design (ICCAD),

2019.

[12] P.-C. Chien and J.-H. Jiang. Time multiplexing via circuit folding. In Proceed-

ings of Design Automation Conference (DAC), 2020.

[13] S. Drews and L. D’Antoni. Learning symbolic automata. In Proceedings of

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), pages 173–189, 2017.

60

doi:10.6342/NTU202001058

Bibliography

[14] I. Han and Y. Shin. Folded circuit synthesis: Min-area logic synthesis us-

ing dual-edge-triggered flip-flops. ACM Transactions on Design Automation of

Electronic Systems (TODAES), 23:1–21, 08 2018.

[15] S. Hauck and G. Borriello. Pin assignment for multi-FPGA systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 16(9):956–964, 1997.

[16] W. N. Hung and R. Sun. Challenges in large FPGA-based logic emulation sys-

tems. In Proceedings of International Symposium on Physical Design (ISPD),

pages 26–33, 2018.

[17] J.-H. R. Jiang and R. K. Brayton. On the verification of sequential equiv-

alence. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems (TCAD), 22(6):686–697, 2003.

[18] J.-H. R. Jiang, J.-Y. Jou, and J.-D. Huang. Compatible class encoding in

hyper-function decomposition for FPGA synthesis. In Proceedings of Design

Automation Conference (DAC), pages 712–717, 1998.

[19] N. Kushik, J. López, A. Cavalli, and N. Yevtushenko. Improving protocol

passive testing through “gedanken” experiments with finite state machines. In

Proceedings of International Conference on Software Quality, Reliability and

Security (QRS), pages 315–322, 2016.

[20] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula. Bdd based decomposition of

logic functions with application to FPGA synthesis. In Proceedings of Design

Automation Conference (DAC), pages 642–647, 1993.

61

doi:10.6342/NTU202001058

Bibliography

[21] D. Lee and M. Yannakakis. Principles and methods of testing finite state ma-

chines - a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[22] H. Liu and D. F. Wong. Network flow based circuit partitioning for time-

multiplexed FPGAs. In Proceedings of International Conference on Computer-

Aided Design (ICCAD), pages 497–504, 1998.

[23] S. Liu, F. Lau, and B. Carrion Schafer. Investigation and optimization of pin

multiplexing in high-level synthesis. In Proceedings of Great Lakes Symposium

on VLSI (GLSVLSI), pages 427–430, 2018.

[24] A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony, and P. Nalla.

GLA: Gate-level abstraction revisited. In Proceedings of the Conference on

Design, Automation and Test in Europe (DATE), pages 1399–1404, 2013.

[25] A. Myaing and V. Dinavahi. FPGA-based real-time emulation of power elec-

tronic systems with detailed representation of device characteristics. IEEE

Transactions on Industrial Electronics (TIE), 58:358 – 368, 2011.

[26] S. Panda, F. Somenzi, and B. F. Plessier. Symmetry detection and dynamic

variable ordering of decision diagrams. In Proceedings of International Confer-

ence of Computer-Aided Design (ICCAD), pages 628–631, 1994.

[27] K. Parhi, C.-Y. Wang, and A. Brown. Synthesis of control circuits in folded

pipelined DSP architectures. IEEE Journal of Solid-State Circuits (JSSC),

27:29 – 43, 02 1992.

62

doi:10.6342/NTU202001058

Bibliography

[28] J.-K. Rho, F. Somenzi, and C. Pixley. Minimum length synchronizing se-

quences of finite state machine. In Proceedings of Design Automation Con-

ference (DAC), pages 463–468, 1993.

[29] J. P. Roth and R. M. Karp. Minimization over Boolean graphs. IBM Journal

of Research and Development, 6(2):227–238, 1962.

[30] S. Sandberg. Homing and synchronizing sequences. In Model-Based Testing of

Reactive Systems: Advanced Lectures, pages 5–33. 2005.

[31] F. Somenzi. CUDD: CU decision diagram package (release 2.4.1). University

of Colorado at Boulder, 2005.

[32] Q. Tang and M. Tuna. Multi-FPGA prototyping board issue: the FPGA I/O

bottleneck. In Proceedings of International Conference on Embedded Computer

Systems: Architectures, Modeling and Simulation (SAMOS), 2014.

[33] S. Trimberger. Scheduling designs into a time-multiplexed FPGA. In Proceed-

ings of International Symposium on Field Programmable Gate Arrays (FPGA),

pages 153–160, 1998.

[34] M. Veanes, P. d. Halleux, and N. Tillmann. Rex: Symbolic regular expres-

sion explorer. In Proceedings of International Conference on Software Testing,

Verification and Validation (ICST), pages 498–507, 2010.

[35] H.-E. Wang, K.-H. Tu, J.-H. R. Jiang, and N. Kushik. Homing sequence deriva-

tion with quantified Boolean satisfiability. In Proceedings of International Con-

ference on Testing Software and Systems (ICTSS), pages 230–242, 2017.

63

doi:10.6342/NTU202001058

Bibliography

[36] L.-T. Wang, C.-W. Wu, and X. Wen. VLSI Test Principles and Architectures:

Design for Testability (Systems on Silicon). Morgan Kaufmann Publishers Inc.,

2006.

[37] C. Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

64

http://www.clifford.at/yosys/

	Verification Letter from the Oral Examination Committee
	Acknowledgements
	Chinese Abstract
	Abstract
	List of Figures
	List of Tables
	Introduction
	Time-frame Folding
	Time Multiplexing
	Our Contributions
	Thesis Organization

	Preliminaries
	Finite State Machine
	Combinational Circuit
	Sequential Circuit
	Time-frame Expansion
	Functional Decomposition

	Time-frame Folding
	Problem Formulation
	Algorithm
	State Identification via Functional Decomposition
	Transition Reconstruction
	State Minimization
	State Encoding

	Implementation Issues

	Circuit Folding for Time Multiplexing
	Problem Formulation
	Structural Circuit Folding
	Functional Circuit Folding
	Pin Scheduling and Iterative Circuit Conversion
	FSM Construction via Time-Frame Folding
	FSM Minimization
	FSM Encoding

	Experiments
	Time-frame Folding
	Fixed Point after TFF
	Circuit Size Compaction

	Time Multiplexing via Circuit Folding
	Structural Folding on Large Circuits
	Comparing Structural and Functional Folding
	Case Study of Combining Structural and Functional Folding

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

