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PROBLEM DESCRIPTION
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Problem Description

 Learn an unknown Boolean function 𝑓 ∶
0, 1 𝑛 → 0, 1 from a training dataset 

consisting of input-output pairs.

 The learned function should be in the 
form of And-Inverter Graph (AIG) with 
strict hardware cost (≤ 5000 gates), and 
will be evaluated by its prediction 
accuracy in hidden testing dataset.
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Benchmarks

 Each benchmark is provided in PLA format and 
contains 6400 minterms in training, validation 
and testing set respectively.
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OUR APPROACH
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DT-based Model

 Binary decision tree
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Entropy

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −𝑝 log2 𝑝 − 1 − 𝑝 log2 1 − 𝑝 ,

where 𝑝 is the probability of true label (𝑦 = 1).
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When 𝑝 = 0.5, we have the maximum 
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 1 → highest uncertainty.

When 𝑝 = 0 or 1, we have the 
lowest 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 0 → no uncertainty.



Information Gain

 The branching variable is selected based 

on maximum information gain.

 Information gain of node 𝑛 of variable 𝑥:

𝐸𝑛 − 𝑝0𝐸0 − 𝑝1𝐸1

where 𝐸𝑛 is the entropy of 𝑛, 𝐸0 is the entropy of 
the 0-child of 𝑛, 𝐸1 is the entropy of the 1-child 
of 𝑛, 𝑝0 and 𝑝1 are the ratio of the data with 𝑥 = 0
and 𝑥 = 1, respectively.
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Growing DT

 Choosing the 1st branching variable
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Growing DT

 Choosing the 1st branching variable

11

𝒙𝟏

T:3
F:1

T:1
F:3

initial entropy: −
1

2
log2

1

2
−

1

2
log2

1

2
= 1

𝒙𝟐

T:2
F:2

T:2
F:2

𝒙𝟑

T:1
F:2

T:3
F:2

entropy 0.81 0.81 1 1 0.92 0.97

info.
Gain

1 −
4

8
⋅ 0.81 +

4

8
⋅

0.81 = 0.19
1 −

4

8
⋅ 1 −

4

8
⋅ 1 = 0 1 −

3

8
⋅ 0.92 −

5

8
⋅ 0.97

= 0.049

max. gain



DT-based Model

 Fringe-feature extraction [1, 2]
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[1] Pagallo et al., 1990. [2] Oliveira et al., 1993.
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DT-based Model
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DT-based Model

 Training flow
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NN-based Model

 3 layer network, each layer is fully-
connected and uses sigmoid as the 
activation function
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NN-based Model

 Connection pruning [3]

[3] Han et al., 2015.
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NN-based Model

 Convert neurons to LUTs
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NN-based Model

 Training flow
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Bagging Ensemble

 Re-partitioning the dataset
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Bagging Ensemble

 Model selection heuristic

23

0.85
1000

0.75
1500

0.70
900

0.90
2000

0.90
5000

0.85
2000

0.80
3000

0.75
1000

0.65
1500

config. 2 config. 3config. 1

val. acc.
#gate

model:

s
o
rt

e
d
 b

y
 a

c
c
.

… ……

ensemble

If circuit size > limit, 
remove the largest 
model and re-select 
again from that config.



EXPERIMENTAL RESULTS
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Experimental Setup

 Our methods were implemented with ML 
packages scikit-learn [4] and Pytorch [5].

 The synthesized circuits were optimized 
by ABC [6].
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[4] Pedregosa et al., 2011 [5] Paszke et al., 2019. [6] Brayton et al., 2010.



Experimental Results

method
avg.

train acc.
avg.

valid acc.
avg.

test acc.
avg. size
(#gate)

DT 90.41% 80.33% 80.15% 303.90

Fr-DT 92.47% 85.37% 85.23% 241.47

NN 82.64% 80.91% 80.90% 10981.38

LUT-Net*[7] 98.37% 72.78% 72.68% 64004.39

ensemble - - 87.25% 1550.33
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[7] Chatterjee et al., 2018.

* LUT-Net is trained with the same avg. #connection as NN



Accuracy Comparison
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Circuit Size Comparison
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Contest Results
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Contest Results
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Contest Results
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Top-accuracy results achieved by each team.
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CONCLUSIONS
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Conclusions

 Boolean functions can be learned by DT-based and
NN-based methods.

 In our experiments, applying decision tree with fringe
feature extraction could generally result in better
model in terms of both accuracy and circuit size.

 NN models, though exceeded circuit size limit in many
cases, they performed better in some other cases
than DT models.

 After ensemble, we could achieve 87.25% accuracy
on hidden test set.

 Our team achieved the highest testing accuracy in
most (42 out of 100) cases, and ranked 4th in
terms of the average testing accuracy.
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THE END
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