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PROBLEM DESCRIPTION



Problem Description

0 Learn an unknown Boolean function f :
{0,1}" - {0,1} from a training dataset
consisting of input-output pairs.

0 The learned function should be in the
form of And-Inverter Graph (AIG) with
strict hardware cost (< 5000 gates), and
will be evaluated by its prediction
accuracy in hidden testing dataset.



Benchmarks

[0 Each benchmark is provided in PLA format and
contains 6400 minterms in training, validation
and testing set respectively.

The 100 Functions in our Benchmark Set: Arithmetic, Random Logic, ML

00-09
10-19
20-29
30-39
40-49
50-59
60-69
70-79
80-89
90-99

2 MSBs of k-bit adders for k in {16, 32, 64, 128, 256}

MSB of k-bit dividers and remainder circuits for k in {16, 32, 64, 128, 256}

MSB and middle bit of k-bit multipliers for k in {8, 16, 32, 64, 128}

k-bit comparators with k in {8, 16, ..., 4096}

LSB and middle bit of k-bit square-rooters with k in {16, 32, 64, 128, 256}

10 outputs of Pico) ava design with 16-200 inputs and roughly balanced on- & offset
10 outputs of MCNC i10 design with 16-200 inputs and roughly balanced on- & offset
5 other outputs from MCNC benchmarks +5 symmetric functions of 16 inputs

10 binary classification problems from MNIST group comparisons

10 binary classification problems from CIFAR-10 group comparisons



OUR APPROACH



DT-based Model

[0 Binary decision tree




Entropy

O entropy = —plog;p — (1 —p)log,(1 —p),
where p is the probability of true label (y = 1).

Entropy as a Function of p for Bernoulli

05 When p = 0or 1, we have the
lowest entropy = 0 — no uncertainty.

When p = 0.5, we have the maximum
entropy = 1 — highest uncertainty.
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Information Gain

] The branching variable is selected based
on maximum information gain.

0 Information gain of node n of variable x:

Ey, —poEo — p1E1

where E,, is the entropy of n, E, is the entropy of
the 0-child of n, E, is the entropy of the 1-child
of n, p, and p, are the ratio of the data with x =0
and x = 1, respectively.



Growing DT

0 Choosing the 1st branching variable

_ . 1 1 1 1
example: initial entropy: —log,> —-logy > =1
X1 X2 X3 |y
O 0 0|0
00 1|1 , , ,
00 11 / / /
0111 T:3 T:1 T:2 T:2 T:1 T:3
10o0lo F:1 F:3 F:2 F:2 F:2 F:2
1 1 1|0 entropy 0.8t 0.81 1 1 0.92 0.97
11110 info. 1-2-0.81+:- o1 % 1— 1-%-0.92—%-0.97
1 1 01 Gain 0.81 = 0.19 8 8 = 0.049
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Growing DT

[0 Choosing the 1st branching variable

T:3 T:1 T:2 T:2
F:1 F:3 F:2 F:2
entropy 0.81 0.81 1 1
info. 1-2-0.81+%- Lt %1
Gain 0.81 = 0.19 8

initial entropy: —%logzé—%logzé =1

| ]
/
/
/
T:1 T:3
F:2 F:2
0.92 0.97
1-3 002-2.097
g " 8
= 0.049
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DT-based Model

0 Fringe-feature extraction [1, 2]

(_le/\xz) V (x1 N _Ixz) — x]_@xZ

Extract x,,., = x;®x, as the
new composite feature of 2
variables, and add it to the
list of decision variables.

fringe (leaf nodes)

[1] Pagallo et al., 1990. [2] Oliveira et al., 1993. 1 3



DT-based Model
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- =-=-1!0-edge ——: 1-edge O: decision node D : leaf node
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DT-based Model

0 Training flow l

no [ N ]
>L DT training

/

[ save the best model ]

(in terms of validation acc.)

Y

[ fringe-feature ]

extraction

Y

f add new features to
| decision variable list

best model

yes
new
features?
\ 4

[ return the




NN-based Model

0 3 layer network, each layer is fully-
connected and uses sigmoid as the
activation function

X; y = sigmoid (2 w;Xx; + b)
J i
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NN-based Model

[0 Connection pruning [3]

/

7]
|
S remove
& 4 :/ unimportant
4 : .

/ , connections
:
~ I




NN-based Model

0 Convert neurons to LUTs

o
[y
o
N
=
w
<

0.48
0.52
0.38
0.43
0.55
0.60
0.45
0.50

LUT —7

= B 2 O O O O
R kL O O R Bk O O
— O = O O = O
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NN-based Model

0 Training flow l
initial NN
training
conversion to
LUT-net /
A no >( prune a portion
of weights

yes

of each neuron
< limit?

Y

[ NN retraining ]
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Bagoing Ensemble

[0 Re-partitioning the dataset

training validation
A A

\
>
4

original

config. 1

config. 2

config. 3

Under each configuration, train multiple models with
different methods and hyper-parameters.
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Bagoing Ensemble

[0 Model selection heuristic

sorted by acc.

| val. acc.
model.[ #gate ]

—> ensemble

config. 1 config. 2 config. 3

" 085 | [ 0.90 }K
. 1000 ) X 2000 )

" 0.75 | 0.90 " 0.75
1500 | | 5000 | 1000

" 0.70 | 0.85 " 0.65 |
900 | | 2000 | 1500

If circuit size > limit,
remove the largest
model and re-select
again from that config.
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EXPERIMENTAL RESULTS
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Experimental Setup

[0 Our methods were implemented with ML
packages scikit-learn [4] and Pytorch [5].

[0 The synthesized circuits were optimized
by ABC [6].
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Experimental Results

method  \ oinacc. validacc. testacc.  (#gate)
DT 90.41%  80.33%  80.15%  303.90
Fr-DT 92.47%  85.37%  85.23%  241.47

NN 82.64%  80.91%  80.90%  10981.38

LUT-Net*[7] 98.37% 72.78% 72.68%  64004.39

ensemble - - 87.25% 1550.33

* LUT-Net is trained with the same avg. #connection as NN

[7] Chatterjee et al., 2018. 2 6



Accuracy Comparison

test acc.
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Circuit Size Comparison
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Contest Results

team | test accuracy  And gates levels overfit
l 88.69 2517.66 39.96 1.86
7 87.50 1167.50 32.02 0.05
8 87.32 1293.92 21.49 0.14
3 87.25 1550.33 21.08 5.76
2 85.95 731.92 80.63 8.70
9 84.65 991.89  103.42 1.75
4 84.64 1795.31 21.00 0.48
5 84.08 114283  145.87 4.17
10 80.25 140.25 10.90 3.86
6 62.40 356.26 8.73 0.88

test acc. and circuit size summary of each team
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Contest Results

100

test accuracy

70 4
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|

(537, 89.88) (1140.76, 91.0)

X

—— Pareto curve for virtual best
X Average accuracy by team
—== Top accuracy achieved by Team 1

50

500 1000 1500 2000 2500
number of And gates

#gate vs. test acc.
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Contest Results
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CONCLUSIONS
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Conclusions

0 Boolean functions can be learned by DT-based and
NN-based methods.

0 In our experiments, applying decision tree with fringe
feature extraction could generally result in better
model in terms of both accuracy and circuit size.

0 NN models, though exceeded circuit size limit in many
cases, they performed better in some other cases
than DT models.

[0 After ensemble, we could achieve 87.25% accuracy
on hidden test set.

[0 Our team achieved the highest testing accuracy in
most (42 out of 100) cases, and ranked 4th in
terms of the average testing accuracy.
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THE END
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